Self-Organizing Global Gene Expression Regulated through Criticality: Mechanism of the Cell-Fate Change.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Background: A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization.
      Principal Findings: Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change.
      Conclusion and Significance: 'Whole-genome' regulation of gene expression through self-regulatory SOC control complements gene-by-gene fine tuning and represents a still largely unexplored non-equilibrium statistical mechanism that is responsible for the massive reprogramming of genome expression.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Cell. 2006 Aug 25;126(4):663-76. (PMID: 16904174)
      Nucleic Acids Res. 2014 Sep;42(15):9553-61. (PMID: 25092923)
      BMC Bioinformatics. 2006 Jan 31;7:49. (PMID: 16448562)
      Phys Chem Chem Phys. 2010 Oct 21;12(39):12352-78. (PMID: 20945523)
      FEBS J. 2007 Jun;274(11):2878-86. (PMID: 17466018)
      J Biol Phys. 2002 Dec;28(4):701-12. (PMID: 23345807)
      Cancer Res. 1985 May;45(5):2334-9. (PMID: 3857118)
      Cell. 2007 Feb 23;128(4):651-4. (PMID: 17320503)
      Nat Struct Mol Biol. 2013 Sep;20(9):1131-9. (PMID: 23934149)
      Biosystems. 2008 May;92(2):148-58. (PMID: 18353531)
      Nature. 2013 Nov 14;503(7475):295-9. (PMID: 24121438)
      Reproduction. 2013 Jan 24;145(2):149-59. (PMID: 23221012)
      Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt A):4964-9. (PMID: 11969450)
      Cancer Res. 1987 Jan 1;47(1):129-34. (PMID: 3466687)
      Physiol Rev. 2006 Jan;86(1):25-88. (PMID: 16371595)
      Cell. 2012 Oct 12;151(2):289-303. (PMID: 23021777)
      J Theor Biol. 2005 Apr 7;233(3):391-411. (PMID: 15652148)
      Science. 2009 Oct 9;326(5950):289-93. (PMID: 19815776)
      Blood. 1999 Jun 15;93(12):4395-405. (PMID: 10361138)
      Phys Rev Lett. 2005 Apr 1;94(12):128701. (PMID: 15903968)
      Science. 2005 Aug 12;309(5737):1078-83. (PMID: 16099987)
      Stem Cell Res. 2012 Mar;8(2):324-33. (PMID: 22169460)
      Nature. 1997 Apr 24;386(6627):855-8. (PMID: 9126747)
      Dev Biol. 2007 May 15;305(2):695-713. (PMID: 17412320)
      Genes Dev. 2001 Aug 15;15(16):2069-82. (PMID: 11511539)
      Cancer Res. 1982 Feb;42(2):445-9. (PMID: 6948604)
      Semin Cell Dev Biol. 2009 Sep;20(7):849-55. (PMID: 19559093)
      Chem Biol. 2000 May;7(5):R103-7. (PMID: 10801477)
      Nature. 2014 Jul 24;511(7510):488-492. (PMID: 25043028)
      Biostatistics. 2003 Apr;4(2):249-64. (PMID: 12925520)
      Cell Stem Cell. 2007 Jun 7;1(1):55-70. (PMID: 18371336)
      J Chem Phys. 2015 Jul 7;143(1):010901. (PMID: 26156455)
      J Biol Chem. 1994 Mar 25;269(12):8786-91. (PMID: 8132611)
      Nature. 2009 Jul 2;460(7251):49-52. (PMID: 19571877)
      BMC Genomics. 2009 Nov 20;10:545. (PMID: 19925682)
      Cell. 2013 Aug 1;154(3):484-9. (PMID: 23911316)
      Biomolecules. 2012 Mar 05;2(1):165-86. (PMID: 24970132)
      Nat Rev Mol Cell Biol. 2013 Jul;14(7):452-9. (PMID: 23778971)
      Nature. 2014 Jul 31;511(7511):606-10. (PMID: 25079557)
      PLoS One. 2009;4(3):e4905. (PMID: 19300509)
      PLoS One. 2014 May 15;9(5):e97411. (PMID: 24831017)
      Cell. 2012 Sep 28;151(1):56-67. (PMID: 23021215)
      Curr Opin Genet Dev. 2011 Apr;21(2):175-86. (PMID: 21342762)
      PLoS One. 2015 Jun 11;10(6):e0128565. (PMID: 26067993)
      Cell Stem Cell. 2008 May 8;2(5):437-47. (PMID: 18462694)
      Cell. 2016 Jun 30;166(1):234-44. (PMID: 27368104)
      Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 1):031905. (PMID: 18517420)
      Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021110. (PMID: 19792080)
      Development. 2012 Mar;139(5):829-41. (PMID: 22318624)
      Phys Rev Lett. 1987 Jul 27;59(4):381-384. (PMID: 10035754)
      J Biol Chem. 2007 Feb 9;282(6):4045-56. (PMID: 17142811)
      Mol Cell. 2013 Mar 7;49(5):773-82. (PMID: 23473598)
      Science. 2005 Oct 21;310(5747):496-8. (PMID: 16239477)
      Nature. 2013 Oct 3;502(7469):59-64. (PMID: 24067610)
      Biochem Soc Trans. 2007 Jun;35(Pt 3):618-22. (PMID: 17511664)
      Biophys J. 2016 Jan 5;110(1):51-62. (PMID: 26745409)
      Cell. 2011 Mar 18;144(6):940-54. (PMID: 21414485)
      Mol Reprod Dev. 1990 May;26(1):90-100. (PMID: 2189447)
      Nat Rev Genet. 2013 Jun;14(6):427-39. (PMID: 23681063)
      Cell. 2010 May 28;141(5):884-96. (PMID: 20493519)
      Bioinformatics. 2003 Jan 22;19(2):185-93. (PMID: 12538238)
      Stem Cell Res. 2009 May;2(3):165-77. (PMID: 19393588)
      Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4781-6. (PMID: 15037758)
      PLoS One. 2010 Aug 11;5(8):e12116. (PMID: 20725638)
      Science. 2014 Jan 10;343(6167):193-6. (PMID: 24408435)
      Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1897-900. (PMID: 18250330)
      J Am Chem Soc. 2010 Feb 17;132(6):1782-3. (PMID: 20095602)
      Science. 2005 Sep 23;309(5743):2010-3. (PMID: 16179466)
      J Phys Condens Matter. 2015 Feb 18;27(6):060301. (PMID: 25563698)
    • Publication Date:
      Date Created: 20161221 Date Completed: 20170630 Latest Revision: 20240714
    • Publication Date:
      20240714
    • Accession Number:
      PMC5173342
    • Accession Number:
      10.1371/journal.pone.0167912
    • Accession Number:
      27997556