Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      J Neurosci. 2009 Apr 8;29(14):4622-39. (PMID: 19357287)
      Endocrinology. 2000 Sep;141(9):3518-21. (PMID: 10965927)
      Nature. 2000 Apr 6;404(6778):661-71. (PMID: 10766253)
      Cell. 1997 Jan 10;88(1):131-41. (PMID: 9019399)
      Pharmacol Rev. 1998 Jun;50(2):279-90. (PMID: 9647869)
      J Neurosci. 2015 Nov 11;35(45):14966-82. (PMID: 26558770)
      Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4695-700. (PMID: 15070780)
      Cell Metab. 2013 Oct 1;18(4):588-95. (PMID: 24093681)
      Neuron. 2012 Feb 9;73(3):511-22. (PMID: 22325203)
      PLoS One. 2015 Mar 17;10(3):e0119457. (PMID: 25782002)
      Cell Metab. 2014 Apr 1;19(4):682-93. (PMID: 24703699)
      Neuron. 2011 Aug 11;71(3):488-97. (PMID: 21835345)
      J Clin Endocrinol Metab. 2004 Jun;89(6):2557-62. (PMID: 15181023)
      J Neurosci. 2015 Sep 23;35(38):13171-82. (PMID: 26400946)
      J Neurosci. 2010 Jul 28;30(30):10205-19. (PMID: 20668204)
      J Mol Neurosci. 2010 Jul;41(3):340-6. (PMID: 20446119)
      J Neurosci. 2010 Feb 17;30(7):2472-9. (PMID: 20164331)
      Nat Commun. 2015 Mar 26;6:6618. (PMID: 25808323)
      Nat Neurosci. 2008 Sep;11(9):998-1000. (PMID: 19160495)
      Nat Neurosci. 2010 Dec;13(12):1457-9. (PMID: 21037584)
      Nat Neurosci. 2011 Mar;14(3):351-5. (PMID: 21209617)
      Mol Metab. 2015 Apr 11;4(6):483-92. (PMID: 26042202)
      J Neurosci. 2009 Feb 4;29(5):1503-13. (PMID: 19193897)
      Neuron. 2005 Dec 22;48(6):1055-66. (PMID: 16364907)
      Nat Rev Neurosci. 2003 Nov;4(11):901-9. (PMID: 14595401)
      J Neurobiol. 2002 Dec;53(4):618-32. (PMID: 12436425)
      Eur J Pharmacol. 2011 Jun 11;660(1):213-9. (PMID: 21208604)
      Cell Metab. 2011 Feb 2;13(2):195-204. (PMID: 21284986)
      J Neurosci. 2011 Aug 17;31(33):11825-35. (PMID: 21849543)
      Nature. 2001 Mar 8;410(6825):207-12. (PMID: 11242080)
      Bioinformatics. 2009 Dec 15;25(24):3325-6. (PMID: 19808880)
      Nat Neurosci. 2012 Oct;15(10):1343-9. (PMID: 23007189)
      Trends Neurosci. 1999 Dec;22(12):540-1. (PMID: 10542429)
      Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11797-802. (PMID: 15280541)
      J Neurophysiol. 2011 Sep;106(3):1191-202. (PMID: 21653710)
      Nature. 2015 Mar 5;519(7541):45-50. (PMID: 25707796)
      Science. 2011 Jun 10;332(6035):1330-2. (PMID: 21659607)
      J Neurosci. 2010 Jan 27;30(4):1560-5. (PMID: 20107083)
      Nature. 2007 Sep 13;449(7159):228-32. (PMID: 17728716)
      Nature. 2006 Sep 21;443(7109):289-95. (PMID: 16988703)
      Diabetes. 2010 Feb;59(2):337-46. (PMID: 19933998)
      Front Neurosci. 2013 May 23;7:85. (PMID: 23734095)
      Nat Med. 1999 Sep;5(9):1066-70. (PMID: 10470087)
      Cell Metab. 2006 Nov;4(5):363-75. (PMID: 17084710)
      J Clin Invest. 2007 Aug;117(8):2325-36. (PMID: 17671657)
      J Clin Invest. 2012 Mar;122(3):1000-9. (PMID: 22326958)
      Neuron. 2012 Oct 4;76(1):98-115. (PMID: 23040809)
      Eur J Neurosci. 2006 Nov;24(10):2731-40. (PMID: 17156199)
    • Grant Information:
      P30 DK026687 United States DK NIDDK NIH HHS; P30 DK057521 United States DK NIDDK NIH HHS; R01 DK092246 United States DK NIDDK NIH HHS
    • Accession Number:
      0 (Receptors, Leptin)
      66796-54-1 (Pro-Opiomelanocortin)
      EC 1.14.16.2 (Tyrosine 3-Monooxygenase)
    • Publication Date:
      Date Created: 20160910 Date Completed: 20170804 Latest Revision: 20190212
    • Publication Date:
      20221213
    • Accession Number:
      PMC5017726
    • Accession Number:
      10.1371/journal.pone.0162839
    • Accession Number:
      27611685