Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Genotype-by-age interaction and identification of longevity-associated genes from microarray data.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Microarray-based comparisons of long-lived and normal mouse strains represent a promising approach for dissecting the basis of lifespan extension in higher organisms. Recently, Boylston et al. (2006) generated a genome-wide data set that allowed expression levels of Snell (Pit1dw/dw) and Ames (Prop1df/df) long-lived mice to be compared with age-matched control mice across different ages (6-24 months). Longevity-associated genes were identified as those genes exhibiting differential expression between long-lived and normal mice at every age examined. In this communication, an alternative approach to identifying longevity-associated genes is suggested and applied to the data sets considered by Boylston et al. (2006). Longevity-associated genes are defined as those exhibiting significant genotype-by-age interaction with respect to expression levels of long-lived and normal mice, and a total of 63 longevity-associated genes are identified. This approach may lend greater confidence to the inference that expression of identified genes specifically underlies aging differences between long-lived and normal genotypes. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Age is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.