Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wolters Kluwer Health, on behalf of the American Society of Nephrology Country of Publication: United States NLM ID: 9013836 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1533-3450 (Electronic) Linking ISSN: 10466673 NLM ISO Abbreviation: J Am Soc Nephrol Subsets: MEDLINE
    • Publication Information:
      Publication: 2023- : Hagerstown, MD : Wolters Kluwer Health, on behalf of the American Society of Nephrology
      Original Publication: Baltimore, MD : Williams & Wilkins, c1990-
    • Subject Terms:
    • Abstract:
      During recovery by regeneration after AKI, proximal tubule cells can fail to redifferentiate, undergo premature growth arrest, and become atrophic. The atrophic tubules display pathologically persistent signaling increases that trigger production of profibrotic peptides, proliferation of interstitial fibroblasts, and fibrosis. We studied proximal tubules after ischemia-reperfusion injury (IRI) to characterize possible mitochondrial pathologies and alterations of critical enzymes that govern energy metabolism. In rat kidneys, tubules undergoing atrophy late after IRI but not normally recovering tubules showed greatly reduced mitochondrial number, with rounded profiles, and large autophagolysosomes. Studies after IRI of kidneys in mice, done in parallel, showed large scale loss of the oxidant-sensitive mitochondrial protein Mpv17L. Renal expression of hypoxia markers also increased after IRI. During early and late reperfusion after IRI, kidneys exhibited increased lactate and pyruvate content and hexokinase activity, which are indicators of glycolysis. Furthermore, normally regenerating tubules as well as tubules undergoing atrophy exhibited increased glycolytic enzyme expression and inhibitory phosphorylation of pyruvate dehydrogenase. TGF-β antagonism prevented these effects. Our data show that the metabolic switch occurred early during regeneration after injury and was reversed during normal tubule recovery but persisted and became progressively more severe in tubule cells that failed to redifferentiate. In conclusion, irreversibility of the metabolic switch, taking place in the context of hypoxia, high TGF-β signaling and depletion of mitochondria characterizes the development of atrophy in proximal tubule cells and may contribute to the renal pathology after AKI.
      (Copyright © 2016 by the American Society of Nephrology.)
    • References:
      Am J Pathol. 1987 Oct;129(1):1-8. (PMID: 2444108)
      J Am Soc Nephrol. 2011 Mar;22(3):431-6. (PMID: 21355058)
      Physiol Rev. 1984 Jan;64(1):170-259. (PMID: 6141578)
      J Am Soc Nephrol. 2014 Jul;25(7):1496-507. (PMID: 24511135)
      Physiol Rev. 1986 Apr;66(2):469-97. (PMID: 2938198)
      Am J Physiol Renal Physiol. 2005 Mar;288(3):F568-77. (PMID: 15536165)
      Mol Pharmacol. 2006 Aug;70(2):518-31. (PMID: 16707625)
      Contrib Nephrol. 2011;174:149-55. (PMID: 21921619)
      Cell Metab. 2006 Mar;3(3):177-85. (PMID: 16517405)
      Am J Physiol. 1990 Jun;258(6 Pt 2):F1608-15. (PMID: 2163215)
      J Biol Chem. 2005 Jun 3;280(22):21036-42. (PMID: 15797859)
      Kidney Int. 2013 May;83(5):804-10. (PMID: 23325080)
      J Am Soc Nephrol. 2009 Jun;20(6):1164-6. (PMID: 19470668)
      Am J Physiol Renal Physiol. 2012 May 1;302(9):F1210-23. (PMID: 22301622)
      J Am Soc Nephrol. 2012 Feb;23(2):215-24. (PMID: 22095949)
      Am J Pathol. 2012 Oct;181(4):1236-49. (PMID: 22885106)
      Semin Nephrol. 2012 May;32(3):295-303. (PMID: 22835461)
      Curr Opin Nephrol Hypertens. 2004 Jan;13(1):1-7. (PMID: 15090853)
      J Biochem. 1997 Jul;122(1):122-8. (PMID: 9276680)
      Am J Pathol. 2001 Jan;158(1):75-85. (PMID: 11141481)
      J Biol Chem. 1994 Sep 23;269(38):23757-63. (PMID: 8089148)
      Anal Biochem. 2009 Jun 15;389(2):157-64. (PMID: 19341700)
      Cell Cycle. 2004 Feb;3(2):164-7. (PMID: 14712082)
      Am J Pathol. 1970 Sep;60(3):385-402. (PMID: 4394099)
      J Biol Chem. 2002 Feb 22;277(8):6183-7. (PMID: 11744734)
      Kidney Int. 1984 Aug;26(2):101-11. (PMID: 6094907)
      Am J Physiol. 1996 Sep;271(3 Pt 2):F689-97. (PMID: 8853432)
      J Am Soc Nephrol. 2003 Aug;14(8):2199-210. (PMID: 12874476)
      Am J Physiol. 1995 Nov;269(5 Pt 1):C1317-25. (PMID: 7491924)
      Kidney Int. 2012 Jul;82(1):45-52. (PMID: 22418982)
      Kidney Int. 1978 Jul;14(1):31-49. (PMID: 682423)
      Am J Physiol Renal Physiol. 2003 Feb;284(2):F338-48. (PMID: 12388385)
      Am J Pathol. 2009 Jun;174(6):2073-85. (PMID: 19465643)
      Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14106-11. (PMID: 18772386)
      Am J Pathol. 1992 Oct;141(4):955-64. (PMID: 1415487)
      PLoS One. 2012;7(3):e33258. (PMID: 22432008)
      J Biol Chem. 2013 Jan 11;288(2):770-7. (PMID: 23204521)
      J Am Soc Nephrol. 2013 Nov;24(11):1806-19. (PMID: 23970125)
      Acta Physiol Scand. 1991 Nov;143(3):279-86. (PMID: 1772036)
      Am J Pathol. 2009 Apr;174(4):1291-308. (PMID: 19342372)
      Nephron. 1968;5(4):249-64. (PMID: 5670178)
      Am J Respir Crit Care Med. 2005 Apr 15;171(8):889-98. (PMID: 15563636)
      Cold Spring Harb Symp Quant Biol. 2011;76:347-53. (PMID: 21785006)
      Kidney Int. 2010 Jan;77(1):9-16. (PMID: 19759527)
      Biochim Biophys Acta. 1986 Mar 19;881(1):62-71. (PMID: 3004599)
      Am J Physiol. 1985 Apr;248(4 Pt 2):F522-6. (PMID: 3985159)
      J Pharmacol Exp Ther. 2008 May;325(2):520-8. (PMID: 18270318)
      Am J Nephrol. 2006;26(1):22-33. (PMID: 16508244)
      Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5096-100. (PMID: 1711218)
      J Histochem Cytochem. 1974 Dec;22(12):1077-83. (PMID: 4374474)
      J Am Soc Nephrol. 2014 May;25(5):998-1012. (PMID: 24385590)
      Am J Physiol Renal Physiol. 2003 Mar;284(3):F488-97. (PMID: 12419774)
      J Histochem Cytochem. 1992 May;40(5):665-73. (PMID: 1374093)
      Am J Physiol Renal Physiol. 2014 May 1;306(9):F1026-38. (PMID: 24598805)
      Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3047-52. (PMID: 10077634)
      Am J Physiol Renal Physiol. 2006 Oct;291(4):F750-60. (PMID: 16597615)
      J Biol Chem. 2008 Oct 17;283(42):28106-14. (PMID: 18718909)
      Am J Physiol Renal Physiol. 2004 Sep;287(3):F365-72. (PMID: 15213065)
      J Biol Chem. 2012 Feb 10;287(7):4434-40. (PMID: 21832045)
      Virchows Arch B Cell Pathol. 1973 May 15;13(1):1-13. (PMID: 4350986)
      Nat Med. 2015 Jan;21(1):37-46. (PMID: 25419705)
      Exp Cell Res. 2009 Feb 15;315(4):602-10. (PMID: 18761338)
      Contrib Nephrol. 1991;95:222-8. (PMID: 1807913)
      Nat Med. 2010 May;16(5):535-43, 1p following 143. (PMID: 20436483)
    • Grant Information:
      I01 BX002367 United States BX BLRD VA; R01 DK037139 United States DK NIDDK NIH HHS; R01 DK060043 United States DK NIDDK NIH HHS; R01 DK104128 United States DK NIDDK NIH HHS
    • Contributed Indexing:
      Keywords: ischemia-reperfusion; metabolism; mitochondria; pathology; proximal tubule
    • Publication Date:
      Date Created: 20160323 Date Completed: 20170529 Latest Revision: 20181113
    • Publication Date:
      20221213
    • Accession Number:
      PMC5084876
    • Accession Number:
      10.1681/ASN.2015020177
    • Accession Number:
      27000065