Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Reprogramming acinar cells into insulin producing cells using adenoviral (Ad)-mediated delivery of Pdx1, Ngn3 and MafA (PNM) is an innovative approach for the treatment of diabetes. Here, we aimed to investigate the molecular mechanisms involved in this process and in particular, the role of microRNAs. To this end, we performed a comparative study of acinar-to-β cell reprogramming efficiency in the rat acinar cell line AR42J and its subclone B13 after transduction with Ad-PNM. B13 cells were more efficiently reprogrammed than AR42J cells, which was demonstrated by a strong activation of β cell markers (Ins1, Ins2, IAPP, NeuroD1 and Pax4). miRNome panels were used to analyze differentially expressed miRNAs in acinar cells under four experimental conditions (i) non-transduced AR42J cells, (ii) non-transduced B13 cells, (iii) B13 cells transduced with Ad-GFP vectors and (iv) B13 cells transduced with Ad-PNM vectors. A total of 59 miRNAs were found to be differentially expressed between non-transduced AR42J and B13 cells. Specifically, the miR-200 family was completely repressed in B13 cells, suggesting that these cells exist in a less differentiated state than AR42J cells and as a consequence they present a greater plasticity. Adenoviral transduction per se induced dedifferentiation of acinar cells and 11 miRNAs were putatively involved in this process, whereas 8 miRNAs were found to be associated with PNM expression. Of note, Ad-PNM reprogrammed B13 cells presented the same levels of miR-137-3p, miR-135a-5p, miR-204-5p and miR-210-3p of those detected in islets, highlighting their role in the process. In conclusion, this study led to the identification of miRNAs that might be of compelling importance to improve acinar-to-β cell conversion for the future treatment of diabetes.
    • References:
      Dev Dyn. 2006 Nov;235(11):3156-65. (PMID: 17013880)
      Nat Med. 2000 May;6(5):568-72. (PMID: 10802714)
      Diabetologia. 2007 Mar;50(3):602-11. (PMID: 17221214)
      RNA. 2007 Aug;13(8):1172-8. (PMID: 17585049)
      Cancer Res. 2007 Sep 1;67(17):7972-6. (PMID: 17804704)
      Mol Endocrinol. 2007 Nov;21(11):2764-74. (PMID: 17636040)
      Diabetes. 2007 Dec;56(12):2938-45. (PMID: 17804764)
      Neuron. 2008 Jan 10;57(1):41-55. (PMID: 18184563)
      J Biomed Sci. 2008 Jul;15(4):487-97. (PMID: 18253862)
      Endocr J. 2008 Aug;55(4):691-8. (PMID: 18506085)
      Nature. 2008 Oct 2;455(7213):627-32. (PMID: 18754011)
      Cell Cycle. 2008 Oct;7(20):3112-8. (PMID: 18927505)
      Nature. 2008 Oct 23;455(7216):1124-8. (PMID: 18806776)
      Mol Biol Cell. 2008 Nov;19(11):4875-87. (PMID: 18799618)
      J Clin Invest. 2009 Jun;119(6):1420-8. (PMID: 19487818)
      Biochim Biophys Acta. 2010 Nov;1803(11):1231-43. (PMID: 20619301)
      Diabetologia. 2011 May;54(5):1075-86. (PMID: 21311856)
      Cell Stem Cell. 2011 Apr 8;8(4):376-88. (PMID: 21474102)
      Nat Rev Genet. 2011 May;12(5):316-28. (PMID: 21468099)
      Biochem J. 2012 Mar 15;442(3):539-50. (PMID: 22150363)
      Mol Cell Endocrinol. 2012 Jul 6;358(1):69-80. (PMID: 22429991)
      Circ Res. 2012 May 25;110(11):1465-73. (PMID: 22539765)
      Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15336-41. (PMID: 22949652)
      PLoS One. 2012;7(10):e48093. (PMID: 23110179)
      PLoS One. 2013;8(1):e55064. (PMID: 23383059)
      Diabetes. 2013 Aug;62(8):2821-33. (PMID: 23610058)
      Nat Med. 2013 Sep;19(9):1141-6. (PMID: 23975026)
      Methods Mol Biol. 2014;1089:159-73. (PMID: 24132485)
      Gene Ther. 2014 Jan;21(1):19-27. (PMID: 24089243)
      Mol Biol Rep. 2014;41(4):2055-66. (PMID: 24469711)
      Cell Rep. 2014 Mar 27;6(6):1046-58. (PMID: 24613355)
      Microrna. 2014;3(1):54-63. (PMID: 25069513)
      Life Sci. 2014 Sep 26;114(1):45-50. (PMID: 25128855)
      Hum Gene Ther. 2014 Sep;25(9):824-36. (PMID: 25046147)
      Nat Biotechnol. 2014 Dec;32(12):1223-30. (PMID: 25402613)
      Biochem Biophys Res Commun. 2014 Oct 24;453(3):405-10. (PMID: 25268319)
      Diabetes. 2001 Feb;50 Suppl 1:S10-4. (PMID: 11272164)
      Nucleic Acids Res. 2001 May 1;29(9):e45. (PMID: 11328886)
      Biochem J. 2003 Mar 15;370(Pt 3):763-9. (PMID: 12542397)
      Cancer Res. 2004 Aug 1;64(15):5245-50. (PMID: 15289330)
      Cancer Lett. 1979 Aug;7(4):197-202. (PMID: 509403)
      Am J Physiol. 1994 Jun;266(6 Pt 1):G963-71. (PMID: 7517639)
      J Clin Invest. 1996 Apr 1;97(7):1647-54. (PMID: 8601630)
      Diabetes. 2005 Apr;54(4):1009-22. (PMID: 15793239)
      Nat Genet. 2006 Mar;38(3):356-62. (PMID: 16462742)
      Mamm Genome. 2006 Aug;17(8):833-40. (PMID: 16897339)
      Mol Ther. 2007 Feb;15(2):255-63. (PMID: 17235302)
    • Accession Number:
      0 (Antigens, Differentiation)
      0 (Insulin)
      0 (Transcription Factors)
    • Publication Date:
      Date Created: 20151223 Date Completed: 20160623 Latest Revision: 20190222
    • Publication Date:
      20240829
    • Accession Number:
      PMC4686894
    • Accession Number:
      10.1371/journal.pone.0145116
    • Accession Number:
      26690959