Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100965194 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2105 (Electronic) Linking ISSN: 14712105 NLM ISO Abbreviation: BMC Bioinformatics Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : BioMed Central, 2000-
    • Subject Terms:
    • Abstract:
      Background: Analysis of single cells in their native environment is a powerful method to address key questions in developmental systems biology. Confocal microscopy imaging of intact tissues, followed by automatic image segmentation, provides a means to conduct cytometric studies while at the same time preserving crucial information about the spatial organization of the tissue and morphological features of the cells. This technique is rapidly evolving but is still not in widespread use among research groups that do not specialize in technique development, perhaps in part for lack of tools that automate repetitive tasks while allowing experts to make the best use of their time in injecting their domain-specific knowledge.
      Results: Here we focus on a well-established stem cell model system, the C. elegans gonad, as well as on two other model systems widely used to study cell fate specification and morphogenesis: the pre-implantation mouse embryo and the developing mouse olfactory epithelium. We report a pipeline that integrates machine-learning-based cell detection, fast human-in-the-loop curation of these detections, and running of active contours seeded from detections to segment cells. The procedure can be bootstrapped by a small number of manual detections, and outperforms alternative pieces of software we benchmarked on C. elegans gonad datasets. Using cell segmentations to quantify fluorescence contents, we report previously-uncharacterized cell behaviors in the model systems we used. We further show how cell morphological features can be used to identify cell cycle phase; this provides a basis for future tools that will streamline cell cycle experiments by minimizing the need for exogenous cell cycle phase labels.
      Conclusions: High-throughput 3D segmentation makes it possible to extract rich information from images that are routinely acquired by biologists, and provides insights - in particular with respect to the cell cycle - that would be difficult to derive otherwise.
    • References:
      Histochem J. 1999 Jan;31(1):63-70. (PMID: 10405824)
      IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1627-45. (PMID: 20634557)
      Nat Methods. 2012 Jun 28;9(7):697-710. (PMID: 22743775)
      Stem Cell Reports. 2014 Mar 11;2(3):382-97. (PMID: 24672759)
      BMC Bioinformatics. 2010 Nov 29;11:580. (PMID: 21114815)
      PLoS Comput Biol. 2012;8(12):e1002780. (PMID: 23236265)
      Bioinformatics. 2009 Mar 1;25(5):695-7. (PMID: 19189978)
      J Theor Biol. 2005 Apr 7;233(3):391-411. (PMID: 15652148)
      Cold Spring Harb Protoc. 2014 May 01;2014(5):. (PMID: 24786503)
      Dev Biol. 2007 May 15;305(2):695-713. (PMID: 17412320)
      IEEE Trans Image Process. 2005 Sep;14(9):1396-410. (PMID: 16190474)
      Nat Biotechnol. 2010 Apr;28(4):348-53. (PMID: 20231818)
      Med Image Comput Comput Assist Interv. 2009;12(Pt 2):617-24. (PMID: 20426163)
      Bioinformatics. 2013 Jul 15;29(14):1840-1. (PMID: 23681123)
      IEEE Trans Image Process. 2010 Mar;19(3):770-81. (PMID: 19955038)
      Science. 2009 Nov 13;326(5955):954-8. (PMID: 19713489)
      BMC Bioinformatics. 2011;12 Suppl 13:S18. (PMID: 22372955)
      Nat Methods. 2010 Sep;7(9):747-54. (PMID: 20693996)
      Development. 2014 Jul;141(14):2750-9. (PMID: 25005470)
      Dev Biol. 2006 Apr 1;292(1):142-51. (PMID: 16480707)
      PLoS Biol. 2010 Jul 13;8(7):e1000420. (PMID: 20644711)
      BMC Biol. 2015 Jul 18;13:51. (PMID: 26187634)
      IEEE Trans Image Process. 2012 Aug;21(8):3518-30. (PMID: 22562755)
      Dev Neurobiol. 2009;7:145-156. (PMID: 24817923)
      Med Image Anal. 2011 Aug;15(4):650-68. (PMID: 20864383)
      Dev Dyn. 2007 Dec;236(12):3343-57. (PMID: 17948315)
      J Pathol. 2009 Jan;217(2):186-98. (PMID: 19065622)
      Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2707-12. (PMID: 16477039)
      J Microsc. 2001 Mar;201(Pt 3):404-15. (PMID: 11240857)
      IEEE Trans Med Imaging. 2008 Jun;27(6):789-804. (PMID: 18541486)
      Development. 2005 Dec;132(23):5211-23. (PMID: 16267092)
      BMC Bioinformatics. 2008 Nov 15;9:482. (PMID: 19014601)
      Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
      BMC Cell Biol. 2010 Apr 08;11:24. (PMID: 20377897)
      Curr Biol. 2010 Nov 23;20(22):R965-9. (PMID: 21093785)
      Cell Res. 2009 Sep;19(9):1052-61. (PMID: 19564890)
      Nat Protoc. 2014 Jan;9(1):193-208. (PMID: 24385149)
      Curr Biol. 2006 Apr 18;16(8):773-9. (PMID: 16631584)
      Nature. 2008 May 22;453(7194):544-7. (PMID: 18497826)
      Cytometry. 1988 Jul;9(4):339-48. (PMID: 2456900)
      Cytometry A. 2007 Sep;71(9):724-36. (PMID: 17654650)
      Nature. 2014 Dec 4;516(7529):56-61. (PMID: 25471879)
      IEEE Trans Image Process. 2013 Oct;22(10):3926-40. (PMID: 23708807)
      Bioinformatics. 2011 Oct 15;27(20):2895-902. (PMID: 21849395)
      Science. 2010 Aug 20;329(5994):967-71. (PMID: 20724640)
      Cytometry A. 2007 Aug;71(8):563-75. (PMID: 17431884)
      Bioinformatics. 2013 Mar 15;29(6):772-9. (PMID: 23337749)
      IEEE Trans Image Process. 2011 Jul;20(7):1925-37. (PMID: 21193379)
      BMC Cell Biol. 2007 Sep 04;8:40. (PMID: 17784958)
      Nat Methods. 2009 Sep;6(9):667-72. (PMID: 19684595)
      Nat Methods. 2012 Jun 28;9(7):683-9. (PMID: 22743773)
      Bioinformatics. 2014 Jun 1;30(11):1609-17. (PMID: 24526711)
      Methods Enzymol. 2006;414:1-21. (PMID: 17110183)
      Bull Math Biol. 2007 Feb;69(2):483-94. (PMID: 17216403)
      IEEE Trans Med Imaging. 2010 Mar;29(3):852-67. (PMID: 20199920)
      Development. 2006 Feb;133(4):611-9. (PMID: 16407400)
      Bioinformatics. 2011 Apr 15;27(8):1179-80. (PMID: 21349861)
      Nat Rev Genet. 2010 Nov;11(11):743-4. (PMID: 20877326)
      Dev Biol. 2015 Jan 1;397(1):45-55. (PMID: 25446538)
      Nat Methods. 2010 Jul;7(7):547-53. (PMID: 20543845)
      Development. 2007 Dec;134(23):4219-31. (PMID: 17978007)
      PLoS Comput Biol. 2012;8(6):e1002519. (PMID: 22719236)
      PLoS One. 2012;7(5):e35550. (PMID: 22590505)
      Neuroimage. 2006 Jul 1;31(3):1116-28. (PMID: 16545965)
      Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2048-53. (PMID: 20080700)
      IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52. (PMID: 19884070)
      Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
      Ann N Y Acad Sci. 1966 Jan 31;128(3):1035-53. (PMID: 5220765)
      Nat Methods. 2012 Jun 28;9(7):690-6. (PMID: 22743774)
      Med Image Anal. 2009 Feb;13(1):143-55. (PMID: 18752984)
      Genome Biol. 2006;7(10):R100. (PMID: 17076895)
    • Grant Information:
      R01-GM102635 United States GM NIGMS NIH HHS; T32 EB009418 United States EB NIBIB NIH HHS; T32-EB009418 United States EB NIBIB NIH HHS; T15-LM007443 United States LM NLM NIH HHS; T32-HD060555 United States HD NICHD NIH HHS; T32 HD060555 United States HD NICHD NIH HHS; CA-62203 United States CA NCI NIH HHS; P50 GM076516 United States GM NIGMS NIH HHS; P30 CA062203 United States CA NCI NIH HHS; R21 AG042125 United States AG NIA NIH HHS; R01 GM102635 United States GM NIGMS NIH HHS; T15 LM007443 United States LM NLM NIH HHS; P50-GM076516 United States GM NIGMS NIH HHS; R21-AG042125 United States AG NIA NIH HHS
    • Publication Date:
      Date Created: 20151127 Date Completed: 20160621 Latest Revision: 20200306
    • Publication Date:
      20221213
    • Accession Number:
      PMC4659165
    • Accession Number:
      10.1186/s12859-015-0814-7
    • Accession Number:
      26607933