Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): David Gomez A; Bull DA; Hsu EW
  • Source:
    Journal of biomechanical engineering [J Biomech Eng] 2015 Oct; Vol. 137 (10), pp. 101010.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: American Society Of Mechanical Engineers Country of Publication: United States NLM ID: 7909584 Publication Model: Print Cited Medium: Internet ISSN: 1528-8951 (Electronic) Linking ISSN: 01480731 NLM ISO Abbreviation: J Biomech Eng Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : American Society Of Mechanical Engineers
      Original Publication: [New York] American Society of Mechanical Engineers.
    • Subject Terms:
    • Abstract:
      Myocardial microstructures are responsible for key aspects of cardiac mechanical function. Natural myocardial deformation across the cardiac cycle induces measurable structural alteration, which varies across disease states. Diffusion tensor magnetic resonance imaging (DT-MRI) has become the tool of choice for myocardial structural analysis. Yet, obtaining the comprehensive structural information of the whole organ, in 3D and time, for subject-specific examination is fundamentally limited by scan time. Therefore, subject-specific finite-element (FE) analysis of a group of rat hearts was implemented for extrapolating a set of initial DT-MRI to the rest of the cardiac cycle. The effect of material symmetry (isotropy, transverse isotropy, and orthotropy), structural input, and warping approach was observed by comparing simulated predictions against in vivo MRI displacement measurements and DT-MRI of an isolated heart preparation at relaxed, inflated, and contracture states. Overall, the results indicate that, while ventricular volume and circumferential strain are largely independent of the simulation strategy, structural alteration predictions are generally improved with the sophistication of the material model, which also enhances torsion and radial strain predictions. Moreover, whereas subject-specific transversely isotropic models produced the most accurate descriptions of fiber structural alterations, the orthotropic models best captured changes in sheet structure. These findings underscore the need for subject-specific input data, including structure, to extrapolate DT-MRI measurements across the cardiac cycle.
    • References:
      J Cardiovasc Magn Reson. 2014;16:89. (PMID: 25388937)
      Am J Physiol. 1998 Dec;275(6 Pt 2):H2308-18. (PMID: 9843833)
      Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H1898-907. (PMID: 16219812)
      PLoS One. 2014;9(9):e107159. (PMID: 25191900)
      J Magn Reson. 1999 Mar;137(1):247-52. (PMID: 10053155)
      Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):319-30. (PMID: 23043978)
      J Biomech. 1992 Oct;25(10):1129-40. (PMID: 1400513)
      Am J Physiol Heart Circ Physiol. 2001 May;280(5):H2222-9. (PMID: 11299225)
      J Biomech Eng. 1993 Feb;115(1):82-90. (PMID: 8445902)
      Biophys J. 1970 Apr;10(4):345-63. (PMID: 5436883)
      J Biomech Eng. 2012 Jan;134(1):011005. (PMID: 22482660)
      IEEE Trans Med Imaging. 2001 Nov;20(11):1131-9. (PMID: 11700739)
      Magn Reson Med. 2015 Mar;73(3):995-1004. (PMID: 24659571)
      J Cardiovasc Magn Reson. 2011;13:74. (PMID: 22117695)
      Circ Cardiovasc Imaging. 2011 Mar;4(2):179-90. (PMID: 21406664)
      PLoS One. 2014;9(4):e92792. (PMID: 24695115)
      Magn Reson Med. 2005 Oct;54(4):850-9. (PMID: 16149057)
      Am J Physiol Heart Circ Physiol. 2002 Jul;283(1):H139-45. (PMID: 12063284)
      Ann Biomed Eng. 1999 May-Jun;27(3):289-97. (PMID: 10374722)
      Biomech Model Mechanobiol. 2014 Jan;13(1):99-113. (PMID: 23609894)
      J Biomech Eng. 1993 Feb;115(1):72-81. (PMID: 8445901)
      Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H664-72. (PMID: 20601466)
      Eur J Cardiothorac Surg. 2007 Aug;32(2):231-49. (PMID: 17462906)
      Invest Radiol. 2007 Nov;42(11):777-89. (PMID: 18030201)
      NMR Biomed. 2009 Feb;22(2):182-90. (PMID: 18780284)
      Radiology. 2004 Mar;230(3):862-71. (PMID: 14739307)
      Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2515-21. (PMID: 16751290)
      Ann N Y Acad Sci. 2005 Jun;1047:296-307. (PMID: 16093505)
      IEEE Trans Med Imaging. 2015 Sep;34(9):1843-53. (PMID: 25775486)
      Technol Health Care. 2013;21(1):63-79. (PMID: 23358060)
      Am J Physiol Heart Circ Physiol. 2002 Dec;283(6):H2650-9. (PMID: 12427603)
      IEEE Trans Med Imaging. 2014 Jun;33(6):1350-62. (PMID: 24771572)
      Ann Biomed Eng. 2012 Oct;40(10):2243-54. (PMID: 22648575)
      Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H692-700. (PMID: 15778283)
      J Biomech Eng. 2005 Dec;127(7):1195-207. (PMID: 16502662)
      Comput Struct. 2007;85(11-14):988-997. (PMID: 19809530)
      Comput Methods Biomech Biomed Engin. 2013;16(8):807-18. (PMID: 22248290)
      Magn Reson Med. 2013 Aug;70(2):454-65. (PMID: 23001828)
      Med Image Anal. 2005 Aug;9(4):376-93. (PMID: 15878302)
      Med Image Anal. 2009 Apr;13(2):354-61. (PMID: 18948056)
      NMR Biomed. 2014 Nov;27(11):1378-86. (PMID: 25200106)
      Am J Physiol. 1995 Aug;269(2 Pt 2):H571-82. (PMID: 7653621)
      J Am Coll Cardiol. 2001 Mar 1;37(3):731-4. (PMID: 11693744)
      IEEE Trans Med Imaging. 2007 Nov;26(11):1500-14. (PMID: 18041265)
      J Appl Physiol (1985). 2009 Sep;107(3):921-7. (PMID: 19628727)
      Prog Biophys Mol Biol. 2014 Aug;115(2-3):213-25. (PMID: 25117498)
      Prog Biophys Mol Biol. 1998;69(2-3):289-331. (PMID: 9785944)
      Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H287-98. (PMID: 22021329)
      Circ Res. 1988 Sep;63(3):550-62. (PMID: 3409487)
      JACC Cardiovasc Imaging. 2009 May;2(5):648-55. (PMID: 19442954)
      Nat Protoc. 2008;3(9):1422-34. (PMID: 18772869)
      J Biomech. 2003 May;36(5):731-6. (PMID: 12695003)
      J Cardiovasc Magn Reson. 2014;16:87. (PMID: 25388867)
      J Magn Reson Imaging. 2003 Jan;17(1):31-42. (PMID: 12500272)
      J Biomech. 1993 Jun;26(6):665-76. (PMID: 8514812)
      J Biomech Eng. 2009 Nov;131(11):111001. (PMID: 20016753)
      J Biomech. 2009 Apr 16;42(6):781-5. (PMID: 19281991)
      Am J Physiol. 1998 May;274(5 Pt 2):H1627-34. (PMID: 9612373)
    • Grant Information:
      R01 HL092055 United States HL NHLBI NIH HHS; S10 RR023017 United States RR NCRR NIH HHS; R01HL092055 United States HL NHLBI NIH HHS
    • Publication Date:
      Date Created: 20150825 Date Completed: 20160519 Latest Revision: 20181113
    • Publication Date:
      20240829
    • Accession Number:
      PMC4844231
    • Accession Number:
      10.1115/1.4031419
    • Accession Number:
      26299478