Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Elsevier Pub. Co Country of Publication: Netherlands NLM ID: 0217513 Publication Model: Print-Electronic Cited Medium: Print ISSN: 0006-3002 (Print) Linking ISSN: 00063002 NLM ISO Abbreviation: Biochim Biophys Acta Subsets: MEDLINE
- Publication Information:
Original Publication: Amsterdam : Elsevier Pub. Co.
- Subject Terms:
- Abstract:
Duchenne muscular dystrophy is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. This pathology is associated with an increased production of reactive oxygen (ROS) and nitrogen species. The aim of this work was to study the alterations in NF-κB activation and interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by electrical stimulation. On the other hand, electrical stimuli induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits: p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50 μM H2O2 increased NF-κB activity; after administration of 100 and 200 μM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 μM and 200 μM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of electrical stimuli in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide on both NF-κB activation and IL-6 expression. Exposure to lipopolysaccharide induced a dramatic increase in both NF-κB activation and IL-6 expression in both wt and mdx myotubes, suggesting that the altered IL-6 gene expression after electrical stimulation in mdx muscle cells is due to dysregulation of Ca2+ release and ROS production, both of which impinge on NF-κB signaling. IL-6 is a key metabolic modulator that is released by the skeletal muscle to coordinate a multi-systemic response (liver, muscle, and adipocytes) during physical exercise; the alteration of this response in dystrophic muscles may contribute to an abnormal response to contraction and exercise.
(Copyright © 2015. Published by Elsevier B.V.)
- References:
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
Hum Gene Ther. 2002 Mar 1;13(4):509-18. (PMID: 11874629)
Lancet. 2002 Feb 23;359(9307):687-95. (PMID: 11879882)
Cell Signal. 2006 Dec;18(12):2238-51. (PMID: 16806820)
J Clin Invest. 2007 Apr;117(4):889-901. (PMID: 17380205)
Acta Myol. 2011 Jun;30(1):16-23. (PMID: 21842588)
FASEB J. 2011 Sep;25(9):2956-66. (PMID: 21602448)
Med Sci Sports Exerc. 2012 Mar;44(3):392-6. (PMID: 21799452)
Am J Physiol Regul Integr Comp Physiol. 2012 Mar 15;302(6):R667-73. (PMID: 22189669)
J Biol Chem. 2012 Jun 15;287(25):20876-87. (PMID: 22549782)
Sci Signal. 2012 Aug 7;5(236):ra56. (PMID: 22871609)
BMC Musculoskelet Disord. 2012;13:106. (PMID: 22716658)
Antioxid Redox Signal. 2013 Feb 20;18(6):603-21. (PMID: 23050834)
J Biol Chem. 2013 Jan 18;288(3):1489-99. (PMID: 23184935)
Exp Physiol. 2013 Feb;98(2):359-71. (PMID: 22941979)
Am J Physiol Endocrinol Metab. 2013 Mar 1;304(5):E453-65. (PMID: 23277185)
Pflugers Arch. 2009 Sep;458(5):915-28. (PMID: 19387681)
PM R. 2009 Aug;1(8):755-68. (PMID: 19695529)
Muscle Nerve. 2010 Oct;42(4):522-9. (PMID: 20730875)
Am J Physiol Endocrinol Metab. 2010 Nov;299(5):E794-801. (PMID: 20739506)
Muscle Nerve. 2010 Dec;42(6):871-80. (PMID: 21104862)
PLoS One. 2010;5(12):e15354. (PMID: 21187957)
Cell Res. 2011 Jan;21(1):103-15. (PMID: 21187859)
Antioxid Redox Signal. 2011 Apr 1;14(7):1245-59. (PMID: 20836702)
Biochim Biophys Acta. 2011 May;1813(5):878-88. (PMID: 21296109)
Physiol Rev. 2002 Apr;82(2):291-329. (PMID: 11917091)
Am J Respir Cell Mol Biol. 2002 May;26(5):587-93. (PMID: 11970911)
Exp Mol Med. 2002 Nov 30;34(5):332-9. (PMID: 12526096)
J Biol Chem. 2003 Jun 27;278(26):24233-41. (PMID: 12711606)
Neurochem Res. 2004 Jul;29(7):1443-51. (PMID: 15202778)
J Physiol. 2004 Jul 15;558(Pt 2):633-45. (PMID: 15169848)
Bioinformatics. 2004 Oct 12;20(15):2471-2. (PMID: 15073005)
Arch Phys Med Rehabil. 1977 May;58(5):195-201. (PMID: 851390)
J Cell Biol. 1994 Jun;125(6):1275-87. (PMID: 8207057)
J Biol Chem. 1995 Jun 16;270(24):14255-8. (PMID: 7782278)
Nucleic Acids Res. 1996 Jun 15;24(12):2236-42. (PMID: 8710491)
Muscle Nerve. 1996 Oct;19(10):1291-301. (PMID: 8808655)
J Neuropathol Exp Neurol. 1997 Jan;56(1):45-57. (PMID: 8990128)
Neuromuscul Disord. 1997 Sep;7(6-7):379-86. (PMID: 9327402)
Muscle Nerve. 1998 May;21(5):567-76. (PMID: 9572235)
Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):429-34. (PMID: 9892650)
Am J Physiol Regul Integr Comp Physiol. 2005 Feb;288(2):R345-53. (PMID: 15637171)
J Biol Chem. 2005 Oct 14;280(41):34538-47. (PMID: 16105840)
Am J Physiol Cell Physiol. 2006 May;290(5):C1428-36. (PMID: 16381797)
J Biol Chem. 2006 Sep 8;281(36):26473-82. (PMID: 16762927)
J Cell Sci. 2013 Mar 1;126(Pt 5):1189-98. (PMID: 23321639)
PLoS One. 2013;8(5):e63989. (PMID: 23704967)
Compr Physiol. 2013 Jul;3(3):1337-62. (PMID: 23897689)
Am J Physiol Cell Physiol. 2013 Oct 15;305(8):C877-86. (PMID: 23926130)
Free Radic Res. 2014 Jan;48(1):12-29. (PMID: 23915064)
Free Radic Biol Med. 2013 Dec;65:162-74. (PMID: 23792277)
PLoS One. 2013;8(12):e81222. (PMID: 24349043)
Muscle Nerve. 2014 Jun;49(6):915-8. (PMID: 24375286)
Nat Commun. 2014;5:4425. (PMID: 25028121)
Am J Physiol Cell Physiol. 2007 May;292(5):C1960-70. (PMID: 17215326)
J Biol Chem. 2007 Oct 19;282(42):30667-72. (PMID: 17720813)
Cell Metab. 2008 Jan;7(1):33-44. (PMID: 18177723)
Free Radic Biol Med. 2008 Jan 15;44(2):126-31. (PMID: 18191748)
J Mol Med (Berl). 2008 Jul;86(7):747-59. (PMID: 18246321)
Muscle Nerve. 2008 Oct;38(4):1290-303. (PMID: 18816601)
- Grant Information:
P01 AR052354 United States AR NIAMS NIH HHS; R01 AR043140 United States AR NIAMS NIH HHS; AR052534 United States AR NIAMS NIH HHS; AR43140 United States AR NIAMS NIH HHS
- Contributed Indexing:
Keywords: Calcium; Duchenne muscular dystrophy; Interleukin-6; Membrane depolarization; NF-κB; Reactive oxygen species
- Accession Number:
0 (Interleukin-6)
0 (NF-kappa B)
0 (Reactive Oxygen Species)
SY7Q814VUP (Calcium)
- Publication Date:
Date Created: 20150411 Date Completed: 20150827 Latest Revision: 20220310
- Publication Date:
20240829
- Accession Number:
PMC4433763
- Accession Number:
10.1016/j.bbadis.2015.03.012
- Accession Number:
25857619
No Comments.