Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Locomotion in extinct giant kangaroos: were sthenurines hop-less monsters?
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
- Publication Information:
Original Publication: San Francisco, CA : Public Library of Science
- Subject Terms:
- Abstract:
Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These "short-faced browsers" first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied forms, more robust than extant forms in their build. The largest (Procoptodon goliah) had an estimated body mass of 240 kg, almost three times the size of the largest living kangaroos, and there is speculation whether a kangaroo of this size would be biomechanically capable of hopping locomotion. Previously described aspects of sthenurine anatomy (specialized forelimbs, rigid lumbar spine) would limit their ability to perform the characteristic kangaroo pentapedal walking (using the tail as a fifth limb), an essential gait at slower speeds as slow hopping is energetically unfeasible. Analysis of limb bone measurements of sthenurines in comparison with extant macropodoids shows a number of anatomical differences, especially in the large species. The scaling of long bone robusticity indicates that sthenurines are following the "normal" allometric trend for macropodoids, while the large extant kangaroos are relatively gracile. Other morphological differences are indicative of adaptations for a novel type of locomotor behavior in sthenurines: they lacked many specialized features for rapid hopping, and they also had anatomy indicative of supporting their body with an upright trunk (e.g., dorsally tipped ischiae), and of supporting their weight on one leg at a time (e.g., larger hips and knees, stabilized ankle joint). We propose that sthenurines adopted a bipedal striding gait (a gait occasionally observed in extant tree-kangaroos): in the smaller and earlier forms, this gait may have been employed as an alternative to pentapedal locomotion at slower speeds, while in the larger Pleistocene forms this gait may have enabled them to evolve to body sizes where hopping was no longer a feasible form of more rapid locomotion.
- References:
J Anat. 2008 Feb;212(2):153-63. (PMID: 18086129)
Acta Physiol Scand. 1989 Jun;136(2):217-27. (PMID: 2782094)
Nature. 1995 Nov 2;378(6552):56-9. (PMID: 7477284)
J Morphol. 2005 Nov;266(2):167-81. (PMID: 16136603)
J Exp Biol. 2005 May;208(Pt 9):1665-76. (PMID: 15855398)
Nature. 2007 Jan 25;445(7126):422-5. (PMID: 17251978)
Comp Biochem Physiol A Mol Integr Physiol. 2008 Sep;151(1):78-84. (PMID: 18586113)
J Comp Physiol B. 2003 Sep;173(7):549-57. (PMID: 12905005)
J Morphol. 1988 Oct;198(1):119-30. (PMID: 3199446)
J Exp Biol. 1993 Jan;174:81-95. (PMID: 8440970)
J Morphol. 2011 Oct;272(10):1230-44. (PMID: 21630322)
Syst Biol. 1998 Sep;47(3):457-74. (PMID: 12066687)
J Morphol. 2013 Feb;274(2):121-46. (PMID: 22972188)
Science. 2003 Jan 17;299(5605):400-2. (PMID: 12532019)
J Anat. 1976 Apr;121(Pt 2):259-77. (PMID: 931780)
J Anat. 2011 Apr;218(4):363-74. (PMID: 21062282)
Zoology (Jena). 2005;108(1):3-12. (PMID: 16351950)
Evol Dev. 2011 Nov-Dec;13(6):533-41. (PMID: 23016937)
Biol Lett. 2014 Jul;10(7):. (PMID: 24990111)
Physiol Biochem Zool. 2000 Nov-Dec;73(6):726-35. (PMID: 11121346)
- Publication Date:
Date Created: 20141022 Date Completed: 20150624 Latest Revision: 20211021
- Publication Date:
20240829
- Accession Number:
PMC4198187
- Accession Number:
10.1371/journal.pone.0109888
- Accession Number:
25333823
No Comments.