Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Phosphorylation-regulated transitions in an oligomeric state control the activity of the Sae2 DNA repair enzyme.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Taylor & Francis Country of Publication: United States NLM ID: 8109087 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5549 (Electronic) Linking ISSN: 02707306 NLM ISO Abbreviation: Mol Cell Biol Subsets: MEDLINE
- Publication Information:
Publication: 2023- : [Philadelphia] : Taylor & Francis
Original Publication: [Washington, D.C.] : American Society for Microbiology, [c1981-
- Subject Terms:
- Abstract:
In the DNA damage response, many repair and signaling molecules mobilize rapidly at the sites of DNA double-strand breaks. This network of immediate responses is regulated at the level of posttranslational modifications that control the activation of DNA processing enzymes, protein kinases, and scaffold proteins to coordinate DNA repair and checkpoint signaling. Here we investigated the DNA damage-induced oligomeric transitions of the Sae2 protein, an important enzyme in the initiation of DNA double-strand break repair. Sae2 is a target of multiple phosphorylation events, which we identified and characterized in vivo in the budding yeast Saccharomyces cerevisiae. Both cell cycle-dependent and DNA damage-dependent phosphorylation sites in Sae2 are important for the survival of DNA damage, and the cell cycle-regulated modifications are required to prime the damage-dependent events. We found that Sae2 exists in the form of inactive oligomers that are transiently released into smaller active units by this series of phosphorylations. DNA damage also triggers removal of Sae2 through autophagy and proteasomal degradation, ensuring that active Sae2 is present only transiently in cells. Overall, this analysis provides evidence for a novel type of protein regulation where the activity of an enzyme is controlled dynamically by posttranslational modifications that regulate its solubility and oligomeric state.
- Comments:
Erratum in: Mol Cell Biol. 2014 Nov 15;34(22):4213.
- References:
Mol Cell. 2013 May 9;50(3):333-43. (PMID: 23623683)
Methods Enzymol. 2002;350:258-77. (PMID: 12073317)
Nature. 2003 Oct 16;425(6959):737-41. (PMID: 14562106)
Mol Cell. 2007 Nov 30;28(4):638-51. (PMID: 18042458)
Methods Enzymol. 2004;377:401-12. (PMID: 14979041)
Gene. 1992 Jan 2;110(1):119-22. (PMID: 1544568)
Annu Rev Genet. 2004;38:233-71. (PMID: 15568977)
Trends Biochem Sci. 2007 May;32(5):204-6. (PMID: 17419062)
Nature. 2002 Jul 25;418(6896):387-91. (PMID: 12140549)
DNA Repair (Amst). 2009 Sep 2;8(9):983-95. (PMID: 19473888)
Phys Biol. 2011 Jun;8(3):035007. (PMID: 21572178)
Annu Rev Genet. 2011;45:247-71. (PMID: 21910633)
Mol Cell. 2001 Jul;8(1):129-36. (PMID: 11511366)
DNA Repair (Amst). 2009 Sep 2;8(9):1018-24. (PMID: 19464967)
Mol Cell Biol. 1996 May;16(5):2164-73. (PMID: 8628283)
Genes Cells. 2012 Jun;17(6):473-93. (PMID: 22563681)
Front Genet. 2012 Nov 20;3:247. (PMID: 23181070)
Trends Cell Biol. 2010 Jul;20(7):402-9. (PMID: 20444606)
Int J Biochem Cell Biol. 2012 Sep;44(9):1541-54. (PMID: 22713792)
Genes Dev. 2005 Jun 1;19(11):1390-9. (PMID: 15937224)
Nat Struct Mol Biol. 2011 Aug 14;18(9):1015-9. (PMID: 21841787)
Biochem Soc Trans. 2012 Oct;40(5):1032-7. (PMID: 22988860)
Nat Struct Mol Biol. 2010 Dec;17(12):1478-85. (PMID: 21102445)
Nature. 2005 Aug 18;436(7053):1053-7. (PMID: 16107854)
Mol Cell Biol. 2004 May;24(10):4151-65. (PMID: 15121837)
DNA Repair (Amst). 2010 Dec 10;9(12):1283-91. (PMID: 21050828)
EMBO J. 2004 Dec 8;23(24):4868-75. (PMID: 15549137)
Mol Cell. 2008 Apr 11;30(1):73-85. (PMID: 18406328)
Mol Cell Biol. 1994 Feb;14(2):923-33. (PMID: 8289832)
Science. 2005 Apr 22;308(5721):551-4. (PMID: 15790808)
Nature. 2011 Mar 3;471(7336):74-79. (PMID: 21368826)
Cell. 2004 Sep 17;118(6):699-713. (PMID: 15369670)
Genetics. 2001 May;158(1):109-22. (PMID: 11333222)
Genetics. 2008 Feb;178(2):711-23. (PMID: 18245357)
Nature. 2004 Oct 21;431(7011):1011-7. (PMID: 15496928)
Nat Cell Biol. 2007 Oct;9(10):1102-9. (PMID: 17909521)
Annu Rev Biochem. 2006;75:333-66. (PMID: 16756495)
Nature. 2008 Oct 2;455(7213):689-92. (PMID: 18716619)
Genetics. 1997 Jul;146(3):781-95. (PMID: 9215887)
Genetics. 1989 May;122(1):19-27. (PMID: 2659436)
Cell. 2008 Sep 19;134(6):981-94. (PMID: 18805091)
Cell. 2008 Oct 17;135(2):250-60. (PMID: 18957200)
Proteomics. 2008 Aug;8(15):2994-3003. (PMID: 18615432)
Genetics. 1997 Jul;146(3):797-816. (PMID: 9215888)
Cell. 2002 Jan 25;108(2):183-93. (PMID: 11832209)
- Grant Information:
GM67055 United States GM NIGMS NIH HHS; K99 GM088413 United States GM NIGMS NIH HHS; United States HHMI Howard Hughes Medical Institute; R01 GM067055 United States GM NIGMS NIH HHS; GM088413 United States GM NIGMS NIH HHS; R01 CA094008 United States CA NCI NIH HHS; CA094008 United States CA NCI NIH HHS; R00 GM088413 United States GM NIGMS NIH HHS
- Accession Number:
0 (Intracellular Signaling Peptides and Proteins)
0 (SAE2 protein, S cerevisiae)
0 (Saccharomyces cerevisiae Proteins)
EC 2.7.11.1 (Protein Serine-Threonine Kinases)
EC 2.7.11.1 (TEL1 protein, S cerevisiae)
EC 3.1.- (Endonucleases)
EC 3.4.25.1 (Proteasome Endopeptidase Complex)
- Publication Date:
Date Created: 20131218 Date Completed: 20140424 Latest Revision: 20211203
- Publication Date:
20231215
- Accession Number:
PMC4023830
- Accession Number:
10.1128/MCB.00963-13
- Accession Number:
24344201
No Comments.