Enterocyte-specific regulation of the apical nutrient transporter SLC6A19 (B(0)AT1) by transcriptional and epigenetic networks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology Country of Publication: United States NLM ID: 2985121R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1083-351X (Electronic) Linking ISSN: 00219258 NLM ISO Abbreviation: J Biol Chem Subsets: MEDLINE
    • Publication Information:
      Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
      Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
    • Subject Terms:
    • Abstract:
      Enterocytes are specialized to absorb nutrients from the lumen of the small intestine by expressing a select set of genes to maximize the uptake of nutrients. They develop from stem cells in the crypt and differentiate into mature enterocytes while moving along the crypt-villus axis. Using the Slc6a19 gene as an example, encoding the neutral amino acid transporter B(0)AT1, we studied regulation of the gene by transcription factors and epigenetic factors in the intestine. To investigate this question, we used a fractionation method to separate mature enterocytes from crypt cells and analyzed gene expression. Transcription factors HNF1a and HNF4a activate transcription of the Slc6a19 gene in villus enterocytes, whereas high levels of SOX9 repress expression in the crypts. CpG dinucleotides in the proximal promoter were highly methylated in the crypt and fully de-methylated in the villus. Furthermore, histone modification H3K27Ac, indicating an active promoter, was prevalent in villus cells but barely detectable in crypt cells. The results suggest that Slc6a19 expression in the intestine is regulated at three different levels involving promoter methylation, histone modification, and opposing transcription factors.
    • References:
      BMC Gastroenterol. 2009 Sep 17;9:68. (PMID: 19761587)
      J Biol Chem. 1999 Aug 20;274(34):24023-30. (PMID: 10446171)
      Nature. 1996 Dec 5;384(6608):455-8. (PMID: 8945470)
      PLoS One. 2009 Nov 16;4(11):e7855. (PMID: 19924231)
      J Cell Biol. 2007 Aug 13;178(4):635-48. (PMID: 17698607)
      Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):314-8. (PMID: 1309611)
      PLoS Biol. 2011 Apr;9(4):e1001046. (PMID: 21526222)
      Am J Physiol. 1991 Jun;260(6 Pt 1):G895-903. (PMID: 2058677)
      Biochem J. 2012 Aug 15;446(1):135-48. (PMID: 22677001)
      Drug Discov Today. 2011 Aug;16(15-16):683-90. (PMID: 21601651)
      Nature. 2006 Dec 21;444(7122):1088-91. (PMID: 17167413)
      Am J Physiol Gastrointest Liver Physiol. 2010 Apr;298(4):G504-17. (PMID: 20133952)
      Proc Natl Acad Sci U S A. 1989 Mar;86(5):1578-82. (PMID: 2466294)
      Nature. 1996 Dec 5;384(6608):458-60. (PMID: 8945471)
      Mol Cell Biol. 2009 Jun;29(11):2945-59. (PMID: 19289501)
      J Biol Chem. 2011 Jul 29;286(30):26638-51. (PMID: 21636576)
      Cell Cycle. 2009 May 15;8(10):1526-31. (PMID: 19377292)
      J Mol Endocrinol. 2001 Aug;27(1):11-29. (PMID: 11463573)
      FASEB J. 1996 Feb;10(2):267-82. (PMID: 8641560)
      J Cell Biol. 2004 Jul 5;166(1):37-47. (PMID: 15240568)
      Am J Physiol Gastrointest Liver Physiol. 2011 Apr;300(4):G503-15. (PMID: 21292996)
      Science. 2004 Feb 27;303(5662):1378-81. (PMID: 14988562)
      Annu Rev Physiol. 2009;71:241-60. (PMID: 18808327)
      Prog Mol Biol Transl Sci. 2010;96:207-29. (PMID: 21075346)
      Curr Top Dev Biol. 2010;90:159-92. (PMID: 20691849)
      Cell. 1996 Feb 23;84(4):575-85. (PMID: 8598044)
      Biochem Biophys Res Commun. 2008 May 2;369(2):788-93. (PMID: 18313392)
      Nature. 2008 Mar 6;452(7183):45-50. (PMID: 18322525)
      Drug Metab Pharmacokinet. 2008;23(1):2-7. (PMID: 18305369)
      FASEB J. 2008 Aug;22(8):2880-7. (PMID: 18424768)
      Am J Physiol Renal Physiol. 2007 Feb;292(2):F533-44. (PMID: 16985211)
      Nat Genet. 2001 Apr;27(4):375-82. (PMID: 11279518)
      Science. 2009 Feb 20;323(5917):1074-7. (PMID: 19119186)
      Nature. 1992 Jan 30;355(6359):457-61. (PMID: 1734282)
      Nucleic Acids Res. 2004 May 11;32(8):2586-93. (PMID: 15141028)
      Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14481-6. (PMID: 11717395)
      Nat Genet. 1997 Dec;17(4):384-5. (PMID: 9398836)
      Science. 2005 Mar 25;307(5717):1904-9. (PMID: 15790842)
      Science. 1997 Jul 4;277(5322):109-12. (PMID: 9204893)
      J Biol Chem. 2004 Jun 4;279(23):24467-76. (PMID: 15044460)
      Dev Cell. 2009 Apr;16(4):588-99. (PMID: 19386267)
      Science. 1987 Oct 30;238(4827):688-92. (PMID: 3499668)
      Kidney Int. 2010 Sep;78(6):569-77. (PMID: 20555317)
    • Contributed Indexing:
      Keywords: Amino Acid Transport; DNA Methylation; Epithelial Cell; HNF-4; Histone Modification; Promoters; Transcription Regulation
    • Accession Number:
      0 (Amino Acid Transport Systems, Neutral)
      0 (Hepatocyte Nuclear Factor 1-alpha)
      0 (Hepatocyte Nuclear Factor 4)
      0 (Histones)
      0 (Hnf1a protein, mouse)
      0 (Hnf4a protein, mouse)
      0 (SLC6A19 protein, mouse)
      0 (SOX9 Transcription Factor)
      0 (Sox9 protein, mouse)
    • Publication Date:
      Date Created: 20131015 Date Completed: 20140204 Latest Revision: 20211021
    • Publication Date:
      20240829
    • Accession Number:
      PMC3837124
    • Accession Number:
      10.1074/jbc.M113.482760
    • Accession Number:
      24121511