Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Puri RV;Puri RV; Reddy PV; Tyagi AK
  • Source:
    PloS one [PLoS One] 2013 Jul 26; Vol. 8 (7), pp. e70514. Date of Electronic Publication: 2013 Jul 26 (Print Publication: 2013).
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Tuberculosis (TB) is responsible for nearly 1.4 million deaths globally every year and continues to remain a serious threat to human health. The problem is further complicated by the growing incidence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), emphasizing the need for the development of new drugs against this disease. Phagosomal maturation arrest is an important strategy employed by Mycobacterium tuberculosis to evade the host immune system. Secretory acid phosphatase (SapM) of M.tuberculosis is known to dephosphorylate phosphotidylinositol 3-phosphate (PI3P) present on phagosomes. However, there have been divergent reports on the involvement of SapM in phagosomal maturation arrest in mycobacteria. This study was aimed at reascertaining the involvement of SapM in phagosomal maturation arrest in M.tuberculosis. Further, for the first time, we have also studied whether SapM is essential for the pathogenesis of M.tuberculosis. By deleting the sapM gene of M.tuberculosis, we demonstrate that MtbΔsapM is defective in the arrest of phagosomal maturation as well as for growth in human THP-1 macrophages. We further show that MtbΔsapM is severely attenuated for growth in the lungs and spleen of guinea pigs and has a significantly reduced ability to cause pathological damage in the host when compared with the parental strain. Also, the guinea pigs infected with MtbΔsapM exhibited a significantly enhanced survival when compared with M.tuberculosis infected animals. The importance of SapM in phagosomal maturation arrest as well as in the pathogenesis of M.tuberculosis establishes it as an attractive target for the development of new therapeutic molecules against tuberculosis.
    • References:
      Traffic. 2003 Sep;4(9):600-6. (PMID: 12911814)
      J Cell Sci. 1998 Apr;111 ( Pt 7):897-905. (PMID: 9490634)
      Electrophoresis. 1997 Dec;18(14):2542-7. (PMID: 9527483)
      Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4033-8. (PMID: 15753315)
      Tubercle. 1960 Feb;41:1-22. (PMID: 14423002)
      Nat Methods. 2007 Feb;4(2):147-52. (PMID: 17179933)
      Immunobiology. 2009;214(7):526-42. (PMID: 19261352)
      J Cell Biol. 2001 Aug 6;154(3):631-44. (PMID: 11489920)
      Microbiology (Reading). 2002 Oct;148(Pt 10):3007-3017. (PMID: 12368434)
      PLoS One. 2012;7(5):e36198. (PMID: 22574140)
      J Infect Dis. 2003 Jan 1;187(1):117-23. (PMID: 12508154)
      J Immunol. 2004 Jun 15;172(12):7592-602. (PMID: 15187139)
      J Bacteriol. 1993 Aug;175(16):5186-92. (PMID: 8349558)
      J Biol Chem. 1997 May 16;272(20):13326-31. (PMID: 9148954)
      Annu Rev Cell Dev Biol. 2004;20:367-94. (PMID: 15473845)
      Infect Immun. 1999 Oct;67(10):5483-5. (PMID: 10496935)
      J Cell Biol. 1994 Mar;124(5):677-88. (PMID: 8120091)
      EMBO Mol Med. 2011 Apr;3(4):222-34. (PMID: 21328541)
      Nihon Rinsho. 2011 Aug;69(8):1373-7. (PMID: 21838032)
      PLoS One. 2008;3(12):e3869. (PMID: 19052643)
      Comp Med. 2008 Aug;58(4):324-40. (PMID: 18724774)
      Tuberculosis (Edinb). 2008 Jul;88(4):295-306. (PMID: 18321783)
      Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13642-7. (PMID: 15340136)
      J Immunol. 1976 Mar;116(3):595-9. (PMID: 815430)
      Microbiology (Reading). 2003 Aug;149(Pt 8):2049-2059. (PMID: 12904545)
      J Cell Biol. 2001 Oct 1;155(1):19-25. (PMID: 11581283)
      Science. 2004 Jun 18;304(5678):1800-4. (PMID: 15155913)
      Cell Host Microbe. 2008 May 15;3(5):316-22. (PMID: 18474358)
      J Bacteriol. 2000 Dec;182(23):6850-3. (PMID: 11073936)
      Trends Cell Biol. 1995 May;5(5):183-6. (PMID: 14731444)
      Clin Microbiol Rev. 2006 Jul;19(3):558-70. (PMID: 16847086)
      Microbiology (Reading). 2000 Feb;146 ( Pt 2):297-303. (PMID: 10708368)
      J Cell Sci. 2002 Sep 15;115(Pt 18):3693-701. (PMID: 12186955)
      Cell Host Microbe. 2008 Apr 17;3(4):224-32. (PMID: 18407066)
      J Bacteriol. 2012 Feb;194(3):567-75. (PMID: 22101841)
      J Cell Biochem. 2011 Oct;112(10):2688-93. (PMID: 21678466)
      Cell Tissue Res. 1998 Jul;293(1):133-41. (PMID: 9634605)
      J Cell Sci. 2007 Aug 15;120(Pt 16):2796-806. (PMID: 17652161)
      Biochem J. 2002 Sep 15;366(Pt 3):689-704. (PMID: 12061891)
      J Cell Sci. 1997 Sep;110 ( Pt 18):2303-14. (PMID: 9378779)
      Trends Mol Med. 2001 Mar;7(3):135-7. (PMID: 11286786)
      Cell Microbiol. 2006 Sep;8(9):1417-29. (PMID: 16922861)
      Mol Microbiol. 1999 Mar;31(6):1603-9. (PMID: 10209735)
      Cell Microbiol. 2008 Dec;10(12):2408-15. (PMID: 18783482)
    • Accession Number:
      EC 3.1.3.2 (Acid Phosphatase)
    • Publication Date:
      Date Created: 20130808 Date Completed: 20140402 Latest Revision: 20211021
    • Publication Date:
      20221213
    • Accession Number:
      PMC3724783
    • Accession Number:
      10.1371/journal.pone.0070514
    • Accession Number:
      23923000