LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF1α and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF1α, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.
    • References:
      J Clin Invest. 2006 May;116(5):1391-9. (PMID: 16614756)
      Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11693-7. (PMID: 8265610)
      PLoS One. 2011 Feb 08;6(2):e16780. (PMID: 21347435)
      Circ Res. 2013 Jan 4;112(1):174-94. (PMID: 23287454)
      J Pharmacol Exp Ther. 1999 May;289(2):735-41. (PMID: 10215647)
      N Engl J Med. 2000 Nov 23;343(21):1520-8, 2 p following 1528. (PMID: 11087881)
      Mol Oncol. 2010 Aug;4(4):347-56. (PMID: 20599447)
      Nat Rev Drug Discov. 2006 Jan;5(1):75-86. (PMID: 16485347)
      J Biol Chem. 1991 Jul 15;266(20):12866-72. (PMID: 1712772)
      Sci Transl Med. 2012 May 2;4(132):132ra54. (PMID: 22553252)
      Prostaglandins. 1977 Sep;14(3):413-23. (PMID: 905569)
      J Biol Chem. 1990 Oct 5;265(28):16737-40. (PMID: 2120205)
      Appl Immunohistochem Mol Morphol. 2004 Mar;12(1):71-4. (PMID: 15163023)
      Proc Natl Acad Sci U S A. 2009 May 5;106(18):7548-52. (PMID: 19376970)
      Circulation. 2012 Sep 11;126(11):1373-84. (PMID: 22865892)
      Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7563-8. (PMID: 10377455)
      Adv Exp Med Biol. 1997;407:87-92. (PMID: 9321936)
      Science. 2004 Dec 10;306(5703):1954-7. (PMID: 15550624)
      Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17597-602. (PMID: 23045674)
      Circ Res. 2011 Apr 15;108(8):950-9. (PMID: 21350211)
      Prostaglandins. 1978 Mar;15(3):383-97. (PMID: 663275)
      J Exp Med. 2006 Sep 4;203(9):2073-83. (PMID: 16894012)
      J Pharmacol Exp Ther. 1994 Dec;271(3):1705-12. (PMID: 7996488)
      J Clin Invest. 2006 Jan;116(1):4-15. (PMID: 16395396)
      Biochem Biophys Res Commun. 2009 Jan 16;378(3):534-8. (PMID: 19061862)
      Exp Physiol. 2012 Feb;97(2):277-89. (PMID: 22080487)
      Rapid Commun Mass Spectrom. 2006;20(20):3023-9. (PMID: 16986207)
      J Pharmacol Exp Ther. 1999 Aug;290(2):551-60. (PMID: 10411562)
      Cell. 1995 Nov 3;83(3):483-92. (PMID: 8521478)
      Adv Exp Med Biol. 1997;407:61-6. (PMID: 9321932)
      Biochem Biophys Res Commun. 1989 Nov 15;164(3):1358-65. (PMID: 2480117)
      Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):E183. (PMID: 23292931)
      J Pharmacol Exp Ther. 2008 Jul;326(1):51-8. (PMID: 18375790)
      Curr Opin Investig Drugs. 2008 Nov;9(11):1151-6. (PMID: 18951293)
      J Mol Cell Cardiol. 2010 Aug;49(2):196-209. (PMID: 20399788)
      Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6727-32. (PMID: 22493243)
      Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2692-6. (PMID: 1849272)
      PLoS Med. 2011 Sep;8(9):e1001098. (PMID: 21980265)
      Mol Imaging Biol. 2006 May-Jun;8(3):171-87. (PMID: 16557423)
    • Grant Information:
      United Kingdom Wellcome Trust; P50 CA086306 United States CA NCI NIH HHS; 0852551Z108/Z United Kingdom WT_ Wellcome Trust
    • Accession Number:
      0 (Prostaglandins)
      58962-34-8 (6-Ketoprostaglandin F1 alpha)
      DCR9Z582X0 (Epoprostenol)
      EC 1.14.99.1 (Cyclooxygenase 1)
      EC 1.14.99.1 (Cyclooxygenase 2)
    • Publication Date:
      Date Created: 20130723 Date Completed: 20140224 Latest Revision: 20211021
    • Publication Date:
      20250114
    • Accession Number:
      PMC3711559
    • Accession Number:
      10.1371/journal.pone.0069524
    • Accession Number:
      23874970