Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): DuVall MM;DuVall MM; Gifford JL; Amrein M; Herzog W
  • Source:
    European biophysics journal : EBJ [Eur Biophys J] 2013 Apr; Vol. 42 (4), pp. 301-7. Date of Electronic Publication: 2012 Dec 07.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Verlag and the European Biophysical Societies Association Country of Publication: Germany NLM ID: 8409413 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1017 (Electronic) Linking ISSN: 01757571 NLM ISO Abbreviation: Eur Biophys J Subsets: MEDLINE
    • Publication Information:
      Publication: 1996- : Berlin : Springer Verlag and the European Biophysical Societies Association
      Original Publication: Berlin ; New York : Springer International, c1984-
    • Subject Terms:
    • Abstract:
      Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.
    • References:
      J Muscle Res Cell Motil. 2002;23(5-6):457-71. (PMID: 12785097)
      Nature. 1970 Aug 15;227(5259):680-5. (PMID: 5432063)
      Circ Res. 2002 Jun 14;90(11):1181-8. (PMID: 12065321)
      Circ Res. 2001 Nov 23;89(11):1065-72. (PMID: 11717165)
      J Muscle Res Cell Motil. 2005;26(6-8):355-65. (PMID: 16341830)
      J Mol Biol. 2002 Jan 25;315(4):819-29. (PMID: 11812150)
      Science. 1995 Oct 13;270(5234):293-6. (PMID: 7569978)
      Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7101-5. (PMID: 1714586)
      Am J Physiol Cell Physiol. 2008 Jan;294(1):C74-8. (PMID: 17928540)
      Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3694-9. (PMID: 10097099)
      Biophys J. 1998 Aug;75(2):662-71. (PMID: 9675168)
      Protein Sci. 2002 Dec;11(12):2759-65. (PMID: 12441375)
      J Biochem. 1977 Aug;82(2):339-45. (PMID: 334755)
      Nature. 1999 Nov 4;402(6757):100-3. (PMID: 10573426)
      J Struct Biol. 2010 May;170(2):270-7. (PMID: 20149875)
      Biophys J. 2005 Nov;89(5):3337-44. (PMID: 16100277)
      J Muscle Res Cell Motil. 2002;23(5-6):483-97. (PMID: 12785099)
      Nature. 1954 May 22;173(4412):971-3. (PMID: 13165697)
      J Muscle Res Cell Motil. 2001;22(2):149-62. (PMID: 11519738)
      Pflugers Arch. 2008 Apr;456(1):101-15. (PMID: 18058125)
      Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2528-34. (PMID: 15548726)
      J Cell Biol. 1998 Feb 23;140(4):853-9. (PMID: 9472037)
      Nature. 1954 May 22;173(4412):973-6. (PMID: 13165698)
      J Cell Biol. 1999 Aug 9;146(3):631-44. (PMID: 10444071)
      Prog Biophys Biophys Chem. 1957;7:255-318. (PMID: 13485191)
      Trends Biochem Sci. 1999 Oct;24(10):379-84. (PMID: 10500301)
      Science. 1994 Sep 9;265(5178):1599-600. (PMID: 8079175)
      Structure. 1996 Mar 15;4(3):323-37. (PMID: 8805538)
      Biochemistry. 2008 Sep 2;47(35):9174-83. (PMID: 18690715)
      J Struct Biol. 2002 Jan-Feb;137(1-2):248-58. (PMID: 12064950)
      Science. 1969 Jun 20;164(3886):1356-65. (PMID: 4181952)
      J Mol Biol. 2003 Jul 18;330(4):867-77. (PMID: 12850153)
      Biophys J. 2001 Oct;81(4):2297-313. (PMID: 11566799)
      Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13716-21. (PMID: 14593205)
      Protein Sci. 2002 Sep;11(9):2179-83. (PMID: 12192073)
      Annu Rev Biochem. 2008;77:101-25. (PMID: 18412537)
      Biophys J. 2002 Jul;83(1):458-72. (PMID: 12080133)
      FEBS Lett. 2004 Jan 2;556(1-3):271-5. (PMID: 14706862)
      Exerc Sport Sci Rev. 2006 Apr;34(2):50-3. (PMID: 16672800)
      Biophys J. 2001 Oct;81(4):2268-77. (PMID: 11566797)
    • Grant Information:
      Canada Canadian Institutes of Health Research
    • Accession Number:
      0 (Connectin)
      0 (Immunoglobulins)
      SY7Q814VUP (Calcium)
    • Publication Date:
      Date Created: 20121211 Date Completed: 20140113 Latest Revision: 20211021
    • Publication Date:
      20240829
    • Accession Number:
      10.1007/s00249-012-0875-8
    • Accession Number:
      23224300