Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101088663 Publication Model: Electronic Cited Medium: Internet ISSN: 1472-6750 (Electronic) Linking ISSN: 14726750 NLM ISO Abbreviation: BMC Biotechnol Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : BioMed Central, 2001-
    • Subject Terms:
    • Abstract:
      Background: Single-domain antibodies (sdAbs), also known as nanobodies or VHHs, are characterized by high stability and solubility, thus maintaining the affinity and therapeutic value provided by conventional antibodies. Given these properties, VHHs offer a novel alternative to classical antibody approaches. To date, VHHs have been produced mainly in E. coli, yeast, plants and mammalian cells. To apply the single-domain antibodies as a preventive or therapeutic strategy to control rotavirus infections in developing countries (444,000 deaths in children under 5 years of age) has to be minimized their production costs.
      Results: Here we describe the highly efficient expression of functional VHHs by the Improved Baculovirus Expression System (IBES® technology), which uses a baculovirus expression vector in combination with Trichoplusia ni larvae as living biofactories. Two VHHs, named 3B2 and 2KD1, specific for the inner capsid protein VP6 of Group A rotavirus, were expressed in insect larvae. The IBES® technology achieved very high expression of 3B2 and 2KD1, reaching 2.62% and 3.63% of the total soluble protein obtained from larvae, respectively. These expression levels represent up to 257 mg/L of protein extract after insect processing (1 L extract represents about 125 g of insect biomass or about 375 insect larvae). Larva-derived antibodies were fully functional when tested in vitro and in vivo, neutralizing Group A rotaviruses and protecting offspring mice against rotavirus-induced diarrhea.
      Conclusions: Our results open up the possibility of using insects as living biofactories (IBES® technology) for the cost-efficient production of these and other fully functional VHHs to be used for diagnostic or therapeutic purposes, thereby eliminating concerns regarding the use of bacterial or mammalian cells. To the best of our knowledge, this is the first time that insects have been used as living biofactories to produce a VHH molecule.
    • References:
      Appl Biochem Biotechnol. 2010 Nov;162(7):1834-46. (PMID: 20393885)
      Vaccine. 1995 Jun;13(9):841-5. (PMID: 7483807)
      J Mol Biol. 2005 Jul 1;350(1):112-25. (PMID: 15913651)
      Vaccine. 2011 Feb 17;29(9):1830-5. (PMID: 21211580)
      Virus Res. 2011 Jan;155(1):55-60. (PMID: 20817054)
      Med Microbiol Immunol. 2009 Aug;198(3):157-74. (PMID: 19529959)
      J Biotechnol. 2005 Dec 6;120(4):347-59. (PMID: 16169108)
      Biotechnol Lett. 2011 May;33(5):947-56. (PMID: 21287234)
      Expert Rev Vaccines. 2008 Apr;7(3):363-71. (PMID: 18393606)
      Clin Vaccine Immunol. 2009 May;16(5):775-8. (PMID: 19297615)
      MAbs. 2009 Sep-Oct;1(5):443-52. (PMID: 20065641)
      J Virol Methods. 2000 Sep;89(1-2):129-36. (PMID: 10996646)
      J Virol. 2008 Oct;82(19):9753-64. (PMID: 18632867)
      J Biotechnol. 2009 Jan 1;139(1):108-14. (PMID: 18984019)
      Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4586-91. (PMID: 16537393)
      Appl Microbiol Biotechnol. 2007 Nov;77(1):13-22. (PMID: 17704915)
      Virology. 2007 Aug 1;364(2):422-30. (PMID: 17434554)
      Nature. 1993 Jun 3;363(6428):446-8. (PMID: 8502296)
      Vaccine. 1996 Feb;14(2):120-6. (PMID: 8852407)
      J Gen Virol. 1998 Nov;79 ( Pt 11):2661-72. (PMID: 9820141)
      Appl Microbiol Biotechnol. 2009 Oct;84(6):1087-94. (PMID: 19455325)
      Methods Mol Biol. 2007;388:267-80. (PMID: 17951775)
      Protein Expr Purif. 2010 Nov;74(1):1-8. (PMID: 20600940)
      J Clin Microbiol. 2006 Sep;44(9):3114-21. (PMID: 16954235)
      J Virol Methods. 2005 Mar;124(1-2):221-4. (PMID: 15664073)
      Proc Natl Acad Sci U S A. 1990 Apr;87(7):2760-4. (PMID: 2181448)
      J Virol Methods. 2007 Dec;146(1-2):424-7. (PMID: 17905447)
      J Biotechnol. 2004 Aug 5;111(3):253-61. (PMID: 15246661)
      Vaccine. 2009 Nov 5;27(47):6627-33. (PMID: 19665605)
      Vaccine. 2006 May 8;24(19):4130-7. (PMID: 16616802)
      Infect Immun. 2002 Jun;70(6):2772-9. (PMID: 12010962)
      J Infect Dis. 2006 Dec 1;194(11):1580-8. (PMID: 17083044)
      J Clin Invest. 2002 May;109(9):1203-13. (PMID: 11994409)
      J Virol Methods. 2008 Oct;153(1):29-35. (PMID: 18638504)
      Protein Expr Purif. 2008 Oct;61(2):142-8. (PMID: 18595733)
      J Virol. 1994 Feb;68(2):766-75. (PMID: 8289380)
      J Virol Methods. 2008 Feb;147(2):364-7. (PMID: 17945356)
      Protein Expr Purif. 2011 Sep;79(1):35-43. (PMID: 21421054)
      Arch Virol. 2007;152(6):1087-101. (PMID: 17318737)
    • Accession Number:
      0 (Antibodies, Viral)
      0 (Single-Domain Antibodies)
    • Publication Date:
      Date Created: 20120908 Date Completed: 20130122 Latest Revision: 20211021
    • Publication Date:
      20221213
    • Accession Number:
      PMC3444942
    • Accession Number:
      10.1186/1472-6750-12-59
    • Accession Number:
      22953695