Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Dobler S;Dobler S; Dalla S; Wagschal V; Agrawal AA
- Source:
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2012 Aug 07; Vol. 109 (32), pp. 13040-5. Date of Electronic Publication: 2012 Jul 23.
- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
- Language:
English
- Additional Information
- Source:
Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1091-6490 (Electronic) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
- Publication Information:
Original Publication: Washington, DC : National Academy of Sciences
- Subject Terms:
- Abstract:
The extent of convergent molecular evolution is largely unknown, yet is critical to understanding the genetics of adaptation. Target site insensitivity to cardenolides is a prime candidate for studying molecular convergence because herbivores in six orders of insects have specialized on these plant poisons, which gain their toxicity by blocking an essential transmembrane carrier, the sodium pump (Na,K-ATPase). We investigated gene sequences of the Na,K-ATPase α-subunit in 18 insects feeding on cardenolide-containing plants (spanning 15 genera and four orders) to screen for amino acid substitutions that might lower sensitivity to cardenolides. The replacement N122H that was previously shown to confer resistance in the monarch butterfly (Danaus plexippus) and Chrysochus leaf beetles was found in four additional species, Oncopeltus fasciatus and Lygaeus kalmii (Heteroptera, Lygaeidae), Labidomera clivicollis (Coleoptera, Chrysomelidae), and Liriomyza asclepiadis (Diptera, Agromyzidae). Thus, across 300 Myr of insect divergence, specialization on cardenolide-containing plants resulted in molecular convergence for an adaptation likely involved in coevolution. Our screen revealed a number of other substitutions connected to cardenolide binding in mammals. We confirmed that some of the particular substitutions provide resistance to cardenolides by introducing five distinct constructs of the Drosophila melanogaster gene into susceptible eucaryotic cells under an ouabain selection regime. These functional assays demonstrate that combined substitutions of Q(111) and N(122) are synergistic, with greater than twofold higher resistance than either substitution alone and >12-fold resistance over the wild type. Thus, even across deep phylogenetic branches, evolutionary degrees of freedom seem to be limited by physiological constraints, such that the same molecular substitutions confer adaptation.
- References:
FEBS Lett. 1992 Dec 21;314(3):477-80. (PMID: 1334851)
Curr Biol. 2010 Jan 26;20(2):R53-4. (PMID: 20129036)
Phytochemistry. 2011 Sep;72(13):1593-604. (PMID: 21620425)
Annu Rev Genet. 2001;35:469-99. (PMID: 11700291)
Mol Biol Evol. 1997 May;14(5):527-36. (PMID: 9159930)
J Biol Chem. 1993 Dec 5;268(34):25632-5. (PMID: 8244998)
Toxicon. 2005 Apr;45(5):581-4. (PMID: 15777953)
Biochem J. 2001 Jun 15;356(Pt 3):685-704. (PMID: 11389677)
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13689-93. (PMID: 15347816)
J Insect Physiol. 2012 May;58(5):607-12. (PMID: 22343317)
J Biol Chem. 1993 Oct 25;268(30):22686-94. (PMID: 8226778)
Genetica. 2005 Feb;123(1-2):157-70. (PMID: 15881688)
Biochemistry. 1994 Apr 12;33(14):4218-24. (PMID: 8155637)
J Neurochem. 1998 Jul;71(1):142-51. (PMID: 9648860)
J Biol Chem. 2006 May 12;281(19):13533-13539. (PMID: 16531406)
Physiology (Bethesda). 2004 Dec;19:377-87. (PMID: 15546856)
Insect Biochem Mol Biol. 1994 Apr;24(4):335-45. (PMID: 8025556)
J Chem Ecol. 1986 May;12(5):1171-87. (PMID: 24307054)
Proc Biol Sci. 1993 Dec 22;254(1341):233-40. (PMID: 8108455)
J Chem Ecol. 1996 Oct;22(10):1921-37. (PMID: 24227116)
Mol Biol Evol. 2011 Oct;28(10):2731-9. (PMID: 21546353)
Mol Biol Evol. 2010 Nov;27(11):2451-64. (PMID: 20534705)
Curr Biol. 2010 Jan 26;20(2):R55-6. (PMID: 20129037)
Prog Nucleic Acid Res Mol Biol. 1990;38:37-89. (PMID: 2158121)
Plant Physiol. 2008 Mar;146(3):801-3. (PMID: 18316632)
Biochemistry. 1988 Nov 1;27(22):8400-8. (PMID: 2853965)
Mol Biol Evol. 2004 Feb;21(2):218-21. (PMID: 12949136)
Mol Ecol. 2012 Jan;21(2):340-9. (PMID: 22126595)
J Insect Physiol. 1998 Mar;44(3-4):197-210. (PMID: 12769954)
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4556-61. (PMID: 22392995)
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6536-41. (PMID: 15084738)
Annu Rev Entomol. 2000;45:371-91. (PMID: 10761582)
J Struct Biol. 2011 May;174(2):296-306. (PMID: 21182963)
J Biol Chem. 2005 Sep 16;280(37):32349-55. (PMID: 16051601)
J Biol Chem. 1989 Dec 25;264(36):21902-6. (PMID: 2557344)
Nature. 2005 Apr 7;434(7034):759-63. (PMID: 15815629)
Science. 2006 Jul 7;313(5783):101-4. (PMID: 16825572)
Eur J Biochem. 1997 Sep 1;248(2):488-95. (PMID: 9346307)
J Biol Chem. 1996 Jun 14;271(24):14176-82. (PMID: 8662895)
- Molecular Sequence:
GENBANK HE956736; HE956737; HE956738; HE956739; HE956740; HE956741; HE956742; HE956743; HE956744; HE956745; HE956746; HE956747; HE956748; HE956749; HE956750; HE956751; HE956752; HE956753; HE956754; HE956755; HE956756
- Accession Number:
0 (Cardenolides)
0 (DNA Primers)
EC 7.2.2.13 (Sodium-Potassium-Exchanging ATPase)
- Publication Date:
Date Created: 20120725 Date Completed: 20121015 Latest Revision: 20211021
- Publication Date:
20240829
- Accession Number:
PMC3420205
- Accession Number:
10.1073/pnas.1202111109
- Accession Number:
22826239
No Comments.