Characterization of collagen fibers in Bruch’s membrane using chemical force microscopy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Bruch’s membrane is a layer composed of collagen fibers located just beneath the retina. This study validates a strategy used to map the morphological and adhesion characteristics of collagen fibers in Bruch’s membrane. Atomic force microscopy tips were functionalized with different chemical groups and used to map the hydrophilic and hydrophobic regions on the surface of the eye tissue. The largest adhesion forces were observed when tips functionalized with NH2 groups were used. The trend in the adhesion forces was rationalized based on the distribution of different functional groups in the triple-helical structure of the collagen fibers. The results of this study can be used to design more effective strategies to treat eye diseases such as age-related macular degeneration. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Analytical & Bioanalytical Chemistry is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)