Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A model-structure of a periplasm-facing state of the NhaA antiporter suggests the molecular underpinnings of pH-induced conformational changes.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Schushan M;Schushan M; Rimon A; Haliloglu T; Forrest LR; Padan E; Ben-Tal N
- Source:
The Journal of biological chemistry [J Biol Chem] 2012 May 25; Vol. 287 (22), pp. 18249-61. Date of Electronic Publication: 2012 Mar 19.
- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
- Language:
English
- Additional Information
- Source:
Publisher: Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology Country of Publication: United States NLM ID: 2985121R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1083-351X (Electronic) Linking ISSN: 00219258 NLM ISO Abbreviation: J Biol Chem Subsets: MEDLINE
- Publication Information:
Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
- Subject Terms:
- Abstract:
The Escherichia coli NhaA antiporter couples the transport of H(+) and Na(+) (or Li(+)) ions to maintain the proper pH range and Na(+) concentration in cells. A crystal structure of NhaA, solved at pH 4, comprises 12 transmembrane helices (TMs), arranged in two domains, with a large cytoplasm-facing funnel and a smaller periplasm-facing funnel. NhaA undergoes conformational changes, e.g. after pH elevation to alkaline ranges, and we used two computational approaches to explore them. On the basis of pseudo-symmetric features of the crystal structure, we predicted the structural architecture of an alternate, periplasm-facing state. In contrast to the crystal structure, the model presents a closed cytoplasmic funnel, and a periplasmic funnel of greater volume. To examine the transporter functional direction of motion, we conducted elastic network analysis of the crystal structure and detected two main normal modes of motion. Notably, both analyses predicted similar trends of conformational changes, consisting of an overall rotational motion of the two domains around a putative symmetry axis at the funnel centers, perpendicular to the membrane plane. This motion, along with conformational changes within specific helices, resulted in closure at the cytoplasmic end and opening at the periplasmic end. Cross-linking experiments, performed between segments on opposite sides of the cytoplasmic funnel, revealed pH-dependent interactions consistent with the proposed conformational changes. We suggest that the model-structure and predicted motion represent alkaline pH-induced conformational changes, mediated by a cluster of evolutionarily conserved, titratable residues, at the cytoplasmic ends of TMs II, V, and IX.
- References:
Nature. 2005 Jun 30;435(7046):1197-202. (PMID: 15988517)
Nat Struct Mol Biol. 2006 Feb;13(2):94-6. (PMID: 16462808)
Biochemistry. 2002 Dec 17;41(50):14897-905. (PMID: 12475238)
Nature. 2011 Dec 18;481(7379):45-50. (PMID: 22178925)
J Biol Chem. 2011 May 27;286(21):le9; author reply Ie10. (PMID: 21602285)
FEBS Lett. 1995 Apr 24;363(3):264-8. (PMID: 7737413)
Biochem J. 1974 Oct;144(1):87-90. (PMID: 4618479)
Curr Opin Struct Biol. 2005 Oct;15(5):586-92. (PMID: 16143512)
Spectrochim Acta A Mol Biomol Spectrosc. 2009 Feb;72(1):102-9. (PMID: 18930435)
Trends Pharmacol Sci. 2010 Sep;31(9):418-26. (PMID: 20655602)
BMC Struct Biol. 2006 Jun 22;6:13. (PMID: 16792816)
Biochim Biophys Acta. 2005 Nov 30;1717(2):67-88. (PMID: 16277975)
Nat Protoc. 2007;2(8):2012-7. (PMID: 17703213)
J Mol Biol. 2010 Mar 12;396(5):1181-96. (PMID: 20053353)
J Mol Biol. 2011 Oct 28;413(3):604-14. (PMID: 21907722)
J Mol Biol. 2006 Nov 17;364(1):54-67. (PMID: 17005200)
EMBO J. 2005 Aug 3;24(15):2720-9. (PMID: 16015376)
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15769-74. (PMID: 21873214)
J Exp Biol. 2009 Jun;212(Pt 11):1593-603. (PMID: 19448069)
Biophys J. 2001 Jan;80(1):505-15. (PMID: 11159421)
Methods Enzymol. 2003;374:492-509. (PMID: 14696386)
Fold Des. 1997;2(3):173-81. (PMID: 9218955)
Science. 2007 Mar 2;315(5816):1282-4. (PMID: 17255477)
J Mol Biol. 2011 Apr 15;407(5):698-715. (PMID: 21315728)
Biochemistry. 2006 Dec 12;45(49):14834-42. (PMID: 17144677)
J Biol Chem. 2004 Jan 30;279(5):3265-72. (PMID: 14604993)
J Biol Chem. 2010 Jan 15;285(3):2211-20. (PMID: 19923224)
J Biol Chem. 2004 Sep 24;279(39):40567-75. (PMID: 15263004)
Biophys J. 2007 Jun 1;92(11):3784-91. (PMID: 17350999)
J Biol Chem. 2007 Dec 28;282(52):37854-63. (PMID: 17981808)
Biochemistry. 1997 Nov 25;36(47):14572-6. (PMID: 9398175)
J Biol Chem. 1991 Jun 15;266(17):11289-94. (PMID: 1645730)
Biochemistry. 2001 Mar 20;40(11):3403-12. (PMID: 11258962)
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18999-9004. (PMID: 18024586)
Annu Rev Biophys Biomol Struct. 2006;35:67-91. (PMID: 16689628)
FEBS Lett. 2006 Jan 23;580(2):358-62. (PMID: 16406365)
Methods Mol Biol. 2008;426:145-59. (PMID: 18542861)
J Mol Biol. 2009 May 8;388(3):659-72. (PMID: 19396973)
Curr Opin Struct Biol. 2006 Aug;16(4):496-504. (PMID: 16822664)
Biochemistry. 2007 Mar 6;46(9):2419-30. (PMID: 17284054)
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10338-43. (PMID: 18647834)
Biochim Biophys Acta. 2004 Jul 23;1658(1-2):2-13. (PMID: 15282168)
Science. 2007 Aug 10;317(5839):799-803. (PMID: 17690293)
Chem Rev. 2010 Mar 10;110(3):1463-97. (PMID: 19785456)
J Biol Chem. 2000 Feb 18;275(7):4734-42. (PMID: 10671505)
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2629-34. (PMID: 16477015)
Proteins. 2011 Jan;79(1):79-91. (PMID: 20938980)
Biochemistry. 2002 Jan 15;41(2):609-17. (PMID: 11781101)
Nature. 1966 Aug 27;211(5052):969-70. (PMID: 5968307)
Proteins. 1997 Nov;29(3):292-308. (PMID: 9365985)
Trends Biochem Sci. 2008 Sep;33(9):435-43. (PMID: 18707888)
J Biol Chem. 2004 May 28;279(22):23104-13. (PMID: 15039449)
Proteins. 2008 Mar;70(4):1219-27. (PMID: 17847101)
J Biol Chem. 1999 Aug 27;274(35):24617-24. (PMID: 10455127)
Nature. 2012 Jan 09;481(7382):469-74. (PMID: 22230955)
J Biol Chem. 2005 Dec 23;280(51):41900-11. (PMID: 16216867)
J Biol Chem. 2011 Jul 1;286(26):23570-81. (PMID: 21566125)
Biophys J. 2006 Jul 15;91(2):508-17. (PMID: 16648166)
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20752-7. (PMID: 19926849)
J Biol Chem. 2008 Jun 6;283(23):15975-87. (PMID: 18387952)
Science. 2008 Aug 8;321(5890):810-4. (PMID: 18599740)
Nature. 2011 Oct 05;478(7369):408-11. (PMID: 21976025)
C R Biol. 2005 Jun;328(6):557-67. (PMID: 15950162)
J Gen Physiol. 2010 Jun;135(6):563-73. (PMID: 20513758)
Am J Physiol Cell Physiol. 2005 Feb;288(2):C223-39. (PMID: 15643048)
- Accession Number:
0 (Escherichia coli Proteins)
0 (NhaA protein, E coli)
0 (Sodium-Hydrogen Exchangers)
- Publication Date:
Date Created: 20120321 Date Completed: 20120815 Latest Revision: 20211021
- Publication Date:
20240829
- Accession Number:
PMC3365733
- Accession Number:
10.1074/jbc.M111.336446
- Accession Number:
22431724
No Comments.