PGE2 promotes angiogenesis through EP4 and PKA Cγ pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Zhang Y;Zhang Y; Daaka Y
  • Source:
    Blood [Blood] 2011 Nov 10; Vol. 118 (19), pp. 5355-64. Date of Electronic Publication: 2011 Sep 16.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Elsevier Country of Publication: United States NLM ID: 7603509 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1528-0020 (Electronic) Linking ISSN: 00064971 NLM ISO Abbreviation: Blood Subsets: MEDLINE
    • Publication Information:
      Publication: 2021- : [New York] : Elsevier
      Original Publication: New York, Grune & Stratton [etc.]
    • Subject Terms:
    • Abstract:
      Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic response is involved in human diseases, including cancer. Proinflammatory prostaglandin E2 (PGE2) is secreted by many cell types and plays important roles in the process of angiogenesis via activation of cognate EP1-4 receptors. Here, we provide evidence that PGE2 promotes the in vitro tube formation of human microvascular endothelial cells, ex vivo vessel outgrowth of aortic rings, and actual in vivo angiogenesis. Use of EP subtype-selective agonists and antagonists suggested EP4 mediates the prostaglandin-induced tube formation, and this conclusion was substantiated with small interfering RNA to specifically knockdown the EP4 expression. EP4 couples to Gαs, leading to activation of protein kinase A (PKA). Inhibition of PKA activity or knockdown of PKA catalytic subunit γ with RNAi attenuates the PGE2-induced tube formation. Further, knocking down the expression of Rap1A, HSPB6, or endothelial NO synthase, which serve as PKA-activatable substrates, inhibits the tube formation, whereas knockdown of RhoA or glycogen synthase kinase 3β that are inactivated after phosphorylation by PKA increases the tube formation. These results support the existence of EP4-to-PKA angiogenic signal and provide rationale for use of selective EP4 signal inhibitors as a probable strategy to control pathologic angiogenesis.
    • References:
      Annu Rev Physiol. 2008;70:357-77. (PMID: 17988207)
      Int J Biochem Cell Biol. 2010 Feb;42(2):198-201. (PMID: 19788928)
      Mol Cell Biol. 2008 Sep;28(18):5803-10. (PMID: 18625726)
      J Biol Chem. 2004 Nov 5;279(45):46700-5. (PMID: 15347673)
      Am J Pathol. 2006 May;168(5):1722-36. (PMID: 16651637)
      Front Biosci. 2000 Aug 01;5:D678-93. (PMID: 10922298)
      Cardiovasc Drug Rev. 2006 Fall-Winter;24(3-4):261-74. (PMID: 17214602)
      J Exp Med. 2003 Jan 20;197(2):221-32. (PMID: 12538661)
      J Biol Chem. 1999 Jan 1;274(1):48-51. (PMID: 9867809)
      Nat Biotechnol. 2010 Apr;28(4):322-4. (PMID: 20379172)
      J Biol Chem. 2002 Nov 1;277(44):41888-96. (PMID: 12167628)
      Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12216-21. (PMID: 20566880)
      Retina. 2004 Jun;24(3):427-34. (PMID: 15187666)
      N Engl J Med. 1991 Jan 3;324(1):1-8. (PMID: 1701519)
      Chem Rev. 2001 Aug;101(8):2381-411. (PMID: 11749379)
      Blood. 2008 Aug 15;112(4):1120-8. (PMID: 18541723)
      J Biol Chem. 2003 May 23;278(21):19023-31. (PMID: 12654918)
      J Biol Chem. 2008 Jan 25;283(4):2139-46. (PMID: 18042549)
      J Immunol. 2007 Jan 15;178(2):1122-35. (PMID: 17202376)
      Cell. 2011 Mar 4;144(5):646-74. (PMID: 21376230)
      J Biol Chem. 2007 Jun 8;282(23):16959-68. (PMID: 17401137)
      Cancer Res. 2003 May 1;63(9):2330-4. (PMID: 12727858)
      Carcinogenesis. 2009 Mar;30(3):377-86. (PMID: 19136477)
      Br J Pharmacol. 2009 Apr;156(8):1228-38. (PMID: 19302593)
      J Biol Chem. 2005 Aug 26;280(34):29993-30000. (PMID: 15970595)
      Eur J Pharmacol. 2006 Dec 28;553(1-3):54-60. (PMID: 17070516)
      Atherosclerosis. 2006 Dec;189(2):350-7. (PMID: 16545819)
      Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H893-9. (PMID: 19181962)
      Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):591-6. (PMID: 14688410)
      FASEB J. 2004 Feb;18(2):300-10. (PMID: 14769824)
      Nature. 2005 Sep 22;437(7058):574-8. (PMID: 16177794)
      J Biol Chem. 2004 Mar 19;279(12):11686-95. (PMID: 14699132)
      Nat Med. 2006 Aug;12(8):939-44. (PMID: 16862152)
      Hum Reprod. 2007 Jan;22(1):36-44. (PMID: 16905765)
      J Biol Chem. 2004 Nov 19;279(47):49430-8. (PMID: 15339925)
      Prog Neurobiol. 2003 Dec;71(6):401-37. (PMID: 15013227)
      J Exp Med. 2006 Apr 17;203(4):941-51. (PMID: 16567391)
      Nat Rev Cancer. 2010 Mar;10(3):181-93. (PMID: 20168319)
      Circ Res. 2010 Jun 11;106(11):1731-42. (PMID: 20413783)
      Cell Signal. 2009 Jun;21(6):906-15. (PMID: 19385062)
      Mol Cell Biol. 2007 Feb;27(4):1334-47. (PMID: 17145776)
      Stem Cells. 2009 Dec;27(12):3021-31. (PMID: 19816949)
      Arch Biochem Biophys. 2002 Jul 15;403(2):219-28. (PMID: 12139971)
      Blood. 2003 Sep 15;102(6):1966-77. (PMID: 12791666)
      Blood. 2010 Nov 18;116(20):4297-306. (PMID: 20664056)
      Blood. 2007 Apr 1;109(7):2847-53. (PMID: 17119124)
      J Mol Cell Cardiol. 2011 Oct;51(4):574-7. (PMID: 20869365)
      Blood. 2009 Jan 8;113(2):488-97. (PMID: 18805968)
      J Cell Mol Med. 2009 Sep;13(9A):2822-33. (PMID: 19538473)
    • Grant Information:
      R01 CA129155 United States CA NCI NIH HHS; CA129155 United States CA NCI NIH HHS
    • Accession Number:
      0 (RNA, Small Interfering)
      0 (Receptors, Prostaglandin E, EP4 Subtype)
      EC 2.7.11.11 (Cyclic AMP-Dependent Protein Kinase Catalytic Subunits)
      EC 2.7.11.11 (protein kinase A Cgamma)
      K7Q1JQR04M (Dinoprostone)
    • Publication Date:
      Date Created: 20110920 Date Completed: 20120103 Latest Revision: 20211020
    • Publication Date:
      20250114
    • Accession Number:
      PMC3217416
    • Accession Number:
      10.1182/blood-2011-04-350587
    • Accession Number:
      21926356