Submolecular-scale imaging of α-helices and C-terminal domains of tubulins by frequency modulation atomic force microscopy in liquid.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Cell Press Country of Publication: United States NLM ID: 0370626 Publication Model: Print Cited Medium: Internet ISSN: 1542-0086 (Electronic) Linking ISSN: 00063495 NLM ISO Abbreviation: Biophys J Subsets: MEDLINE
    • Publication Information:
      Publication: Cambridge, MA : Cell Press
      Original Publication: New York, Published by Rockefeller University Press [etc.] for the Biophysical Society.
    • Subject Terms:
    • Abstract:
      In this study, we directly imaged subnanometer-scale structures of tubulins by performing frequency modulation atomic force microscopy (FM-AFM) in liquid. Individual α-helices at the surface of a tubulin protofilament were imaged as periodic corrugations with a spacing of 0.53 nm, which corresponds to the common pitch of an α-helix backbone (0.54 nm). The identification of individual α-helices allowed us to determine the orientation of the deposited tubulin protofilament. As a result, C-terminal domains of tubulins were identified as protrusions with a height of 0.4 nm from the surface of the tubulin. The imaging mechanism for the observed subnanometer-scale contrasts is discussed in relation to the possible structures of the C-terminal domains. Because the C-terminal domains are chemically modified to regulate the interactions between tubulins and other biomolecules (e.g., motor proteins and microtubule-associated proteins), detailed structural information on individual C-terminal domains is valuable for understanding such regulation mechanisms. The results obtained in this study demonstrate that FM-AFM is capable of visualizing the structural variation of tubulins with subnanometer resolution. This is an important first step toward using FM-AFM to analyze the functions of tubulins.
      (Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.)
    • References:
      Nanotechnology. 2008 Sep 24;19(38):384011. (PMID: 21832570)
      Nature. 1998 Jan 8;391(6663):199-203. (PMID: 9428769)
      J Biol Chem. 1996 Sep 6;271(36):22117-24. (PMID: 8703022)
      Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3213-8. (PMID: 17360631)
      Cell. 2000 Jan 21;100(2):241-52. (PMID: 10660047)
      Biophys J. 1995 May;68(5):1681-6. (PMID: 7612811)
      Science. 1995 Apr 7;268(5207):92-4. (PMID: 7701347)
      Nat Neurosci. 2009 May;12(5):559-67. (PMID: 19377471)
      Curr Biol. 2007 Oct 23;17(20):1765-70. (PMID: 17919908)
      Biophys J. 1993 Dec;65(6):2437-46. (PMID: 8312482)
      Nanotechnology. 2008 Sep 24;19(38):384010. (PMID: 21832569)
      J Struct Biol. 1995 Sep-Oct;115(2):199-208. (PMID: 7577240)
      Curr Opin Chem Biol. 2003 Oct;7(5):641-7. (PMID: 14580570)
      Cell. 1997 Jul 25;90(2):217-24. (PMID: 9244296)
      Methods Cell Biol. 2010;95:3-15. (PMID: 20466126)
      J Mol Biol. 2001 Nov 9;313(5):1045-57. (PMID: 11700061)
      Langmuir. 2009 Apr 9;25(6):3331-5. (PMID: 19275176)
      Biochemistry. 2001 Dec 25;40(51):15512-9. (PMID: 11747426)
      Prog Biophys Mol Biol. 2002 May-Jul;79(1-3):1-43. (PMID: 12225775)
      Ultramicroscopy. 2003 Oct-Nov;97(1-4):239-47. (PMID: 12801676)
      Biochim Biophys Acta. 1994 Mar 2;1199(2):105-14. (PMID: 8123659)
      Biophys J. 1999 Feb;76(2):1101-11. (PMID: 9916042)
      Mol Cell Biol. 1986 Jul;6(7):2409-19. (PMID: 3785200)
      Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):836-8. (PMID: 11607452)
      Nature. 2006 Jul 27;442(7101):475-8. (PMID: 16738547)
      Biophys J. 1993 Jul;65(1):149-63. (PMID: 8396452)
      Curr Biol. 1995 Aug 1;5(8):900-8. (PMID: 7583148)
      Science. 1989 Mar 24;243(4898):1586-9. (PMID: 2928794)
      Biophys J. 2006 Oct 1;91(7):2532-42. (PMID: 16798815)
      J Struct Biol. 1993 Nov-Dec;111(3):190-9. (PMID: 8003380)
      Nanotechnology. 2009 Jul 1;20(26):264008. (PMID: 19509439)
      J Mol Biol. 2007 Jul 6;370(2):246-55. (PMID: 17524423)
      Proc Natl Acad Sci U S A. 1986 Jun;83(12):4327-31. (PMID: 3459176)
      Nat Nanotechnol. 2008 May;3(5):261-9. (PMID: 18654521)
      Biophys J. 2006 Aug 15;91(4):1521-31. (PMID: 16731557)
      Biochemistry. 1994 Oct 18;33(41):12471-7. (PMID: 7522559)
      Biophys J. 1999 Aug;77(2):1150-8. (PMID: 10423460)
      J Phys Chem B. 2007 May 17;111(19):5053-7. (PMID: 17441764)
      Phys Rev Lett. 2011 May 13;106(19):198101. (PMID: 21668203)
      Biophys J. 2008 Mar 15;94(6):1971-82. (PMID: 17993481)
      Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 1):031915. (PMID: 15089330)
      FEBS Lett. 1998 Jun 23;430(1-2):105-11. (PMID: 9678604)
      Cell. 2000 Sep 15;102(6):809-16. (PMID: 11030624)
      Biochemistry. 1997 Jan 21;36(3):461-8. (PMID: 9012661)
      J Biol Chem. 2001 Apr 20;276(16):12839-48. (PMID: 11278895)
      Phys Rev Lett. 1986 Mar 3;56(9):930-933. (PMID: 10033323)
      Cell Struct Funct. 2010;35(1):15-22. (PMID: 20190462)
    • Accession Number:
      0 (Tubulin)
    • Publication Date:
      Date Created: 20110906 Date Completed: 20111223 Latest Revision: 20211020
    • Publication Date:
      20221213
    • Accession Number:
      PMC3164191
    • Accession Number:
      10.1016/j.bpj.2011.07.020
    • Accession Number:
      21889465