The Effects of Methylmercury on Mitochondrial Function and Reactive Oxygen Species Formation in Rat Striatal Synaptosomes Are Age-Dependent.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Methylmercury (MeHg) is especially toxic to the developing central nervous system. In order to understand the reasons for this age-dependent vulnerability, we compared the effects of MeHg on formation of reactive oxygen species (ROS) and mitochondrial function in striatal synaptosomes obtained from rats of various ages. Basal ROS levels were greater, and basal mitochondrial function was lower, in synaptosomes from younger animals, compared to adult animals. MeHg induced ROS formation in synaptosomes from rats of all ages, although the increases were greatest in synaptosomes from the younger animals. MeHg also reduced mitochondrial metabolic function, as assessed by MTT reduction, as well as mitochondrial membrane potential; again, the greatest changes were seen in synaptosomes from early postnatal animals. These age-dependent differences in susceptibility to MeHg are most likely due to a less efficient ROS detoxifying system and lower activity of mitochondrial enzymes in tissue from young animals. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Toxicological Sciences is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)