Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Maklad A;Maklad A; Kamel S; Wong E; Fritzsch B
- Source:
Cell and tissue research [Cell Tissue Res] 2010 May; Vol. 340 (2), pp. 303-21. Date of Electronic Publication: 2010 Apr 28.
- Publication Type:
Journal Article
- Language:
English
- Additional Information
- Source:
Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0417625 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0878 (Electronic) Linking ISSN: 0302766X NLM ISO Abbreviation: Cell Tissue Res Subsets: MEDLINE
- Publication Information:
Original Publication: Berlin, New York, Springer-Verlag.
- Subject Terms:
- Abstract:
A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears.
- References:
J Comp Neurol. 1994 Apr 8;342(2):279-98. (PMID: 8201035)
J Neurobiol. 2002 Nov 5;53(2):143-56. (PMID: 12382272)
Prog Brain Res. 2000;124:123-37. (PMID: 10943122)
Acta Otolaryngol Suppl. 1961;163:56-8. (PMID: 13763836)
Laryngoscope. 1996 May;106(5 Pt 1):533-4. (PMID: 8628077)
J Comp Neurol. 1990 Apr 22;294(4):491-506. (PMID: 2341623)
J Vestib Res. 2004;14(1):1-15. (PMID: 15156092)
J Neurophysiol. 1965 Nov;28(6):1014-28. (PMID: 5295929)
Cold Spring Harb Symp Quant Biol. 1965;30:115-32. (PMID: 5295824)
J Neurophysiol. 2005 Jan;93(1):251-66. (PMID: 15240767)
Exp Brain Res. 1971;12(3):223-37. (PMID: 5553370)
J Laryngol Otol. 1969 Jan;83(1):1-17. (PMID: 4974740)
J Comp Neurol. 1989 Dec 15;290(3):423-39. (PMID: 2592621)
Ann N Y Acad Sci. 1996 Jun 19;781:607-10. (PMID: 8694453)
J Vestib Res. 1999;9(6):387-99. (PMID: 10639024)
Brain Res Bull. 2003 Jun 15;60(5-6):423-33. (PMID: 12787865)
Anat Embryol (Berl). 1979;157(1):1-14. (PMID: 92901)
Am J Otol. 1981 Jul;3(1):68-9. (PMID: 7282910)
Ann N Y Acad Sci. 2002 Dec;978:28-45. (PMID: 12582039)
Development. 2004 Sep;131(17):4119-30. (PMID: 15319325)
Exp Brain Res. 2001 Mar;137(2):190-6. (PMID: 11315547)
Am J Anat. 1972 Oct;135(2):221-49. (PMID: 4627955)
J Comp Neurol. 1996 Mar 25;367(1):110-31. (PMID: 8867286)
Ann N Y Acad Sci. 1999 May 28;871:162-72. (PMID: 10372069)
J Neurophysiol. 2003 Mar;89(3):1660-77. (PMID: 12626631)
J Neurophysiol. 2003 Jan;89(1):534-50. (PMID: 12522200)
Arch Ital Biol. 1964 Jan 8;102:1-21. (PMID: 14176955)
J Neurophysiol. 2006 Dec;96(6):3293-304. (PMID: 16943311)
Brain Res Bull. 2004 Dec 15;64(4):289-301. (PMID: 15561463)
Ann N Y Acad Sci. 1999 May 28;871:51-64. (PMID: 10372062)
J Neurophysiol. 1990 Apr;63(4):767-80. (PMID: 2341875)
J Comp Neurol. 1966 Oct;128(2):191-208. (PMID: 5970298)
J Neurophysiol. 1995 Dec;74(6):2573-89. (PMID: 8747215)
J Comp Neurol. 1993 Jan 22;327(4):521-34. (PMID: 7680050)
J Neurophysiol. 2002 Feb;87(2):962-75. (PMID: 11826061)
Neuroscience. 1999;93(1):171-81. (PMID: 10430481)
Brain Res Bull. 2003 Jun 15;60(5-6):497-510. (PMID: 12787869)
J Comp Neurol. 1994 Jan 8;339(2):174-80. (PMID: 8300904)
J Neurocytol. 1999 Oct-Nov;28(10-11):821-35. (PMID: 10900087)
J Neurophysiol. 1987 Oct;58(4):719-38. (PMID: 2445938)
J Neurophysiol. 1988 Jul;60(1):167-81. (PMID: 3404215)
Acta Otolaryngol. 1986 Nov-Dec;102(5-6):463-73. (PMID: 3788546)
J Comp Neurol. 2001 Apr 23;433(1):48-61. (PMID: 11283948)
Int Rev Neurobiol. 1972;15:27-81. (PMID: 4347728)
Hear Res. 1993 Feb;65(1-2):51-60. (PMID: 8458759)
J Comp Neurol. 1997 Jan 13;377(2):149-64. (PMID: 8986878)
Hear Res. 1995 Jul;87(1-2):141-55. (PMID: 8567431)
Brain Res. 1970 Feb 3;17(3):524-6. (PMID: 5412700)
J Neurophysiol. 1995 Mar;73(3):1253-69. (PMID: 7608769)
J Comp Neurol. 1979 Mar 15;184(2):265-77. (PMID: 762284)
Otolaryngol Head Neck Surg. 1998 Sep;119(3):182-92. (PMID: 9743074)
J Neurosci. 2006 Mar 15;26(11):2881-93. (PMID: 16540565)
J Comp Neurol. 2002 Oct 7;452(1):11-23. (PMID: 12205706)
Ann N Y Acad Sci. 1981;374:1-10. (PMID: 6978627)
Dev Dyn. 2005 Jun;233(2):570-83. (PMID: 15844198)
Acta Otolaryngol Suppl. 1963;192:SUPPL 192:85-9. (PMID: 14219409)
Proc Natl Acad Sci U S A. 1979 Mar;76(3):1506-9. (PMID: 312502)
Ann N Y Acad Sci. 2001 Oct;942:313-21. (PMID: 11710473)
J Neurophysiol. 1966 May;29(3):467-92. (PMID: 5961161)
Immunol Invest. 2007;36(5-6):763-89. (PMID: 18161528)
Neurosci Lett. 1985 Jun 24;57(3):273-8. (PMID: 4034096)
Exp Brain Res. 2000 Dec;135(4):462-73. (PMID: 11156310)
Dev Dyn. 2005 Nov;234(3):633-50. (PMID: 16145671)
J Comp Neurol. 1985 Jan 1;231(1):1-26. (PMID: 3968224)
J Cell Biol. 1964 Aug;22:413-31. (PMID: 14203389)
Bioessays. 2007 Feb;29(2):120-32. (PMID: 17226800)
Int J Dev Biol. 2007;51(6-7):663-78. (PMID: 17891725)
J Neurophysiol. 2008 Feb;99(2):718-33. (PMID: 18046005)
Brain Res Bull. 2003 Jun 15;60(5-6):475-95. (PMID: 12787868)
J Neurophysiol. 1996 Nov;76(5):3087-101. (PMID: 8930257)
J Neurophysiol. 1995 Apr;73(4):1716-20. (PMID: 7643178)
J Comp Neurol. 2003 Nov 3;466(1):31-47. (PMID: 14515239)
J Comp Neurol. 1999 Oct 25;413(3):480-93. (PMID: 10502253)
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2407-11. (PMID: 329282)
Brain Res Bull. 2005 Aug 15;66(3):249-58. (PMID: 16023922)
Exp Brain Res. 1990;79(3):547-63. (PMID: 1971225)
Brain Res Dev Brain Res. 2002 Apr 30;135(1-2):1-17. (PMID: 11978388)
Brain Res. 1984 Mar 5;294(2):281-98. (PMID: 6200186)
Anat Embryol (Berl). 1984;170(3):229-38. (PMID: 6151813)
J Neurophysiol. 1990 Apr;63(4):791-804. (PMID: 2341877)
Neuroscience. 2001;104(4):1127-39. (PMID: 11457596)
Brain Res. 1987 Jul 21;416(1):100-12. (PMID: 3620947)
J Neurophysiol. 1997 Oct;78(4):2186-92. (PMID: 9325385)
J Neurophysiol. 1995 Mar;73(3):1270-81. (PMID: 7608770)
J Neurophysiol. 1988 Jul;60(1):182-203. (PMID: 3404216)
Brain Res Dev Brain Res. 2003 Feb 16;140(2):223-36. (PMID: 12586428)
Neurosci Lett. 1998 Jan 16;240(3):127-30. (PMID: 9502220)
Acta Otolaryngol Suppl. 1961;163:25-9. (PMID: 13784494)
- Grant Information:
R01 DC005590 United States DC NIDCD NIH HHS
- Accession Number:
0 (Neuronal Tract-Tracers)
- Publication Date:
Date Created: 20100429 Date Completed: 20100721 Latest Revision: 20211020
- Publication Date:
20240829
- Accession Number:
PMC2953634
- Accession Number:
10.1007/s00441-010-0944-1
- Accession Number:
20424840
No Comments.