Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      The ability to manipulate nanoscopic matter precisely is critical for the development of active nanosystems. Optical tweezers are excellent tools for transporting particles ranging in size from several micrometres to a few hundred nanometres. Manipulation of dielectric objects with much smaller diameters, however, requires stronger optical confinement and higher intensities than can be provided by these diffraction-limited systems. Here we present an approach to optofluidic transport that overcomes these limitations, using sub-wavelength liquid-core slot waveguides. The technique simultaneously makes use of near-field optical forces to confine matter inside the waveguide and scattering/adsorption forces to transport it. The ability of the slot waveguide to condense the accessible electromagnetic energy to scales as small as 60 nm allows us also to overcome the fundamental diffraction problem. We apply the approach here to the trapping and transport of 75-nm dielectric nanoparticles and lambda-DNA molecules. Because trapping occurs along a line, rather than at a point as with traditional point traps, the method provides the ability to handle extended biomolecules directly. We also carry out a detailed numerical analysis that relates the near-field optical forces to release kinetics. We believe that the architecture demonstrated here will help to bridge the gap between optical manipulation and nanofluidics.
    • References:
      Opt Lett. 1994 Jul 1;19(13):930-2. (PMID: 19844491)
      Nanotechnology. 2008 Jan 30;19(4):045704. (PMID: 21817521)
      Nature. 2006 Jul 27;442(7101):381-6. (PMID: 16871205)
      Nat Mater. 2006 Jan;5(1):27-32. (PMID: 16362056)
      Nat Mater. 2005 Jul;4(7):530-3. (PMID: 15965480)
      Nature. 2005 Jul 21;436(7049):370-2. (PMID: 16034413)
      Opt Lett. 2004 Jun 1;29(11):1209-11. (PMID: 15209249)
      Anal Chem. 2006 May 1;78(9):3221-5. (PMID: 16643018)
      Opt Express. 2007 Oct 29;15(22):14322-34. (PMID: 19550709)
      Nature. 2003 Aug 14;424(6950):810-6. (PMID: 12917694)
      Opt Express. 2005 Jan 10;13(1):1-7. (PMID: 19488319)
      Nat Biotechnol. 2005 Jan;23(1):83-7. (PMID: 15608628)
      Opt Lett. 1986 May 1;11(5):288. (PMID: 19730608)
      Anal Chem. 2008 Jul 1;80(13):5197-202. (PMID: 18489123)
      Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3960-4. (PMID: 12651960)
      Opt Express. 2004 Nov 1;12(22):5475-80. (PMID: 19484108)
      Nature. 2003 Nov 27;426(6965):421-4. (PMID: 14647376)
      Opt Express. 2005 Sep 5;13(18):6956-63. (PMID: 19498716)
      Opt Express. 2008 Mar 17;16(6):3712-26. (PMID: 18542466)
      Opt Express. 2007 Jun 25;15(13):8146-56. (PMID: 19547141)
      Nat Biotechnol. 2000 Jul;18(7):760-3. (PMID: 10888845)
    • Accession Number:
      0 (DNA, Viral)
    • Publication Date:
      Date Created: 20090106 Date Completed: 20090127 Latest Revision: 20211020
    • Publication Date:
      20231215
    • Accession Number:
      10.1038/nature07593
    • Accession Number:
      19122638