Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Comparison of carbon‐reinforced composites manufactured by vacuum assisted resin infusion with traditional and fully recyclable epoxy resins.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Tosto, Claudio; Saitta, Lorena; Barouni, Antigoni; Sarasini, Fabrizio; Tirilló, Jacopo; Bavasso, Irene; Ziegmann, Gerhard
- Source:
Polymer Composites; 12/10/2024, Vol. 45 Issue 17, p15649-15663, 15p
- Subject Terms:
- Additional Information
- Abstract:
This study presents a comparative analysis of carbon fiber reinforced polymer (CFRP) composites manufactured through vacuum assisted resin infusion (VARI) using a traditional epoxy resin (E), a fully‐recyclable epoxy resin system with (BBR10) and without (BBR) the addition of a reactive diluent (R*Diluent). Various mechanical and thermal tests were conducted to assess their performance. The BBR10 laminate, incorporating 10 wt% R*Diluent, exhibited competitive mechanical performance, comparable to traditional (E) and fully‐recyclable laminates (BBR). Despite a slightly lower ultimate tensile strength (UTS) compared with BBR, BBR10 demonstrated improved flexural strength and modulus. Low‐velocity impact testing confirmed comparable strength between VARI‐produced composites with the recyclable matrix (BBR and BBR10) and the traditional one (E). X‐ray mCT investigations revealed distinct void arrangements in the CFRP laminates. Additionally, a chemical approach was employed for recovering high fractions of fibers from CFRP laminates with a recyclable matrix (BBR and BBR10). Chemical recycling achieved an almost 100% yield for long carbon fibers. Highlights: Comparative analysis of CFRP composites manufactured through VARI.Diluent addition allowed to tailor the recyclable epoxy viscosity.Mechanical characterization of traditional and fully recyclable epoxy resins.Investigation by X‐ray mCT of potential flaws and manufacturing defects.Chemical recycling of CFRP laminates with a recyclable matrix. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Polymer Composites is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.