An automatic segmentation of calcified tissue in forward-looking intravascular ultrasound images.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      • An automated process for accurately segmenting the lumen and identifying calcified tissue in FL-IVUS images is introduced. • The combination of superpixel segmentation and FCM clustering algorithm increases the stability of image segmentation. • Polar transformation and area detector identify calcified tissue regions. • The automatic segmentation outcomes are juxtaposed with the manual markings by professionals for comparison. • The method has been demonstrated to be efficient. The assessment of images of the coronary artery system plays a crucial part in the diagnosis and treatment of cardiovascular diseases (CVD). Forward-looking intravascular ultrasound (FL-IVUS) has a distinct advantage in assessing CVD due to its superior resolution and imaging capability, especially in severe calcification scenarios. The demarcation of the lumen and media-adventitia, as well as the identification of calcified tissue information, constitute the initial steps in assessing of CVD such as atherosclerosis using FL-IVUS images. In this research, we introduced a novel approach for automated lumen segmentation and identification of calcified tissue in FL-IVUS images. The proposed method utilizes superpixel segmentation and fuzzy C-means clustering (FCM) to identify regions that potentially correspond to lumina. Furthermore, connected component labeling and active contour methods are employed to refine the contours of lumina. To handle the distinctive depth information found in FL-IVUS images, ellipse fitting and region detectors are applied to identify areas with calcified tissue. In our dataset consisting of 43 FL-IVUS images, this method achieved mean values for Jaccard measure, Dice coefficient, Hausdorff distance, and percentage area difference at 0.952 ± 0.016, 0.975 ± 0.008, 0.296 ± 0.186, and 0.019 ± 0.010, respectively. Furthermore, when compared with traditional segmentation approaches, the proposed approach yields higher images quality. The test results demonstrate the effectiveness of this innovative automated segmentation technique for detecting the lumina and calcified tissue in FL-IVUS images. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Biomedical Signal Processing & Control is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)