Exploration of immunomodulatory mechanism of caprine Wharton's jelly derived mesenchymal stem cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      [Display omitted] • Caprine Wharton's jelly derived MSCs secreted important biomolecules involved in immunomodulatory mechanism. • Cell to cell contact is the major mechanism while paracrine mechanism also plays important role. • Significant upregulation of MHC I (CAHI) and MHC II (CLA DRB3) is observed after differentiation of cWJ-MSCs. The present study was aimed to explore the possible mechanisms by which caprine Wharton's jelly-derived MSCs (WJ-MSCs) perform their immunomodulatory function. WJ-MSCs were isolated through explants culture and characterized as per ISCT criteria using culture behavior, expression of surface markers by PCR, FACS and immunocytochemical localization (ICC), trilineage differentiation potential etc. Secretory behavior for important biomolecules (IDO, TGFβ1, VEGF, IL6) was evaluated by ICC and western blot assay. Cell-to-cell communication was studied by culturing cells in cell–cell contact and trans -well system. The MSCs when co-cultured with activated Tc and Th cells, down-regulation of T cell cytokine as well as upregulation of immunomodulatory factors (VEGF A, IL10, IL6, IDO, iNOS, PTGS2, HGF, TGFβ, CXCL10, CXCL11) was noticed in both cell–cell contact and trans -well culture system which was significantly higher in cell–cell contact system. Trilineage differentiation of MSCs showed significant upregulation of MHC I (CAHI) and MHC II (CLA DRB3) molecules suggesting better clinical applications of MSCs without differentiation to avoid immune rejection. It can be concluded that WJ-MSCs perform their immunomodulation through the secretion of a battery of biomolecules and work in both cell–cell contact manner and through their secretome. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Cellular Immunology is the property of Academic Press Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)