Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Solar Wind Power Likely Governs Uranus' Thermosphere Temperature.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Observations of Uranus in the near‐infrared by ground‐based telescopes from 1992 to 2018 have shown that the planet's upper atmosphere (thermosphere) steadily cooled from ∼700 to ∼450 K. We explain this cooling as due to the concurrent decline in the power of the solar wind incident on Uranus' magnetic field, which has dropped by ∼50% over the same period due to solar activity trends longer than the 11‐year solar cycle. Uranus' thermosphere appears to be more strongly governed by the solar wind than any other planet where we have assessed this coupling so far. Uranus' total auroral power may also have declined, in contrast with the power of the radio aurora that we expect has been predominantly modulated by the solar cycle. In the absence of strong local driving, planets with sufficiently large magnetospheres may also have thermospheres predominantly governed by the stellar wind, rather than stellar radiation. Plain Language Summary: So far, we have only explored the Uranus planetary system with the Voyager 2 spacecraft, which flew past in 1986. This encounter led to many discoveries, and as many mysteries. One of these mysteries has only become clear since the flyby, as ground‐based telescopes have been monitoring the temperature of Uranus' tenuous upper atmosphere and have found that this layer has been getting colder and colder since the Voyager era, unlike the deeper atmosphere that has stayed about the same temperature. By 2018 the temperature of this upper layer had almost halved, and neither the 11‐year cycle of solar activity nor Uranus' changing seasons appear to have been in control. We finally provide a solution to this long‐standing problem by identifying that the energy input to Uranus' magnetic field by the tenuous, high‐speed flow of charged particles from the Sun has been similarly declining over decades. This interaction is what drives energy flow through space around the planet, and this energy ultimately does most of the heating of the upper atmosphere, where auroras are generated. We highlight that the situation may be similar at exoplanets with similarly large magnetospheres. Key Points: Ground‐based telescopes have shown that Uranus' thermosphere steadily and dramatically cooled from ∼1992 to ∼2018We explain this cooling as due to declining solar wind kinetic power incident on Uranus' magnetosphere controlling thermosphere temperatureUranus' thermosphere appears to be governed by the solar wind, total auroral power may have also declined over the same period [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Geophysical Research Letters is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.