Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Antimicrobial resistance (AMR) is a growing public health threat caused by the widespread overuse of antibiotics. Bacteria with antibiotic resistance may acquire resistance genes from soil or water. Endogenous hydrogen sulfide (H2S) production in bacteria confers antibiotic tolerance in many, suggesting a universal defense mechanism against antibiotics. In this study, we isolated and identified soil-based antibiotic-resistant bacteria collected from contaminated areas. An antibiotic-resistant bacterium was identified as non-endogenous-H2S-producing, allowing us to examine the effect of exogenous H2S on its resistance mechanism. Therefore, we demonstrated that different classes of antibiotic resistance can be reverted by employing H2S with antibiotics like ampicillin and gentamicin. Methods like Kirby-Bauer Disk-Diffusion, Scanning Electron Microscopy, and Flow Cytometer analysis were performed to assess the antibacterial activity of H2S with ampicillin and gentamicin. The antioxidative efficiency of H2S was evaluated using the DCFH-DA (ROS) test, as well as lipid peroxidation, and LDH activity. These were further confirmed with enzymatic and non-enzymatic (SOD, CAT, GST, and GSH) antioxidant studies. These findings support H2S as an antibiotic-potentiator, causing bacterial membrane damage, oxidative stress, and disrupting DNA and proteins. Thus, supplying exogenous H2S can be a good agent for the reversal of Antibiotic resistance. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Current Microbiology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.