Age of air from in situ trace gas measurements: insights from a new technique.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The age of air is an important transport diagnostic that can be derived from trace gas measurements and compared to global chemistry climate model output. We describe a new technique to calculate the age of air, measuring transport times from the Earth's surface to any location in the atmosphere based on simultaneous in situ measurements of multiple key long-lived trace gases. The primary benefits of this new technique include (1) optimized ages of air consistent with simultaneously measured SF6 and CO2 ; (2) age of air from the upper troposphere through the stratosphere; (3) estimates of the second moment of age spectra that have not been well constrained from measurements; and (4) flexibility to be used with measurements across multiple instruments, platforms, and decades. We demonstrate the technique on aircraft and balloon measurements from the 1990s, the last period of extensive stratospheric in situ sampling, and several recent missions from the 2020s, and compare the results with previously published and modeled values. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Atmospheric Chemistry & Physics is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)