Injectable Hydrogels for Intratumoral Administration Against Breast Cancer.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Breast cancer poses a significant health risk and remains the most prevalent cancer among women. The side effects associated with traditional chemotherapy, such as neurotoxicity, liver or kidney dysfunction, highlight the urgent need for novel breast cancer therapies. In this regard, local delivery of chemotherapeutics has been emerged to be one of the efficient methods to eradicate the tumor cells. Injectable hydrogels were developed as drug delivery systems for localized drug accumulation and controlled drug release at the tumor site. Hydrogels are 3D network of polymeric structures with notable biocompatibility, swelling properties and mechanical strength. In fact, an injectable hydrogel enhances drug delivery efficiency, reduces systemic drug cytotoxicity, minimizes the essential drug dosage and frequency of drug administration. The studies based on injectable hydrogels for specific cancer therapy showed that such platforms are more effective and durable methods than traditional chemotherapy. Additionally, they are vastly used in inhibiting postsurgical tumor recurrence. These hydrogel platforms can integrate multiple breast cancer therapies into a single structure to improve the treatment efficacy. In this review, a variety of injectable hydrogel drug delivery platforms were discussed for several types of applications, such as gene therapy, drug delivery, immunotherapy, photothermal therapy, photodynamic therapy, and combined therapies with synergistic effects against breast cancer. Moreover, we provided a brief summary of the recent advances in the application of such hydrogels for breast cancer treatment. This review provides insight into the recent advancements in injectable hydrogels and discusses the potential future applications and challenges associated with this drug delivery technology toward cancer therapy. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Polymers & the Environment is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)