Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: The new frontiers of computer-based surgery, technology, and material advances, have allowed for customized 3D printed manufacturing to become widespread in guided bone regeneration (GBR) in oral implantology. The shape, structural, mechanical, and biological manufacturing characteristics achieved through 3D printing technologies allow for the customization of implant-prosthetic rehabilitations and GBR procedures according to patient-specific needs, reducing complications and surgery time. Therefore, the present narrative review aims to elucidate the 3D-printing digital radiographic process, materials, indications, 3D printed manufacturing-controlled characteristics, histological findings, complications, patient-reported outcomes, and short- and long-term clinical considerations of customized 3D printed mesh, membranes, bone substitutes, and dental implants applied to GBR in oral implantology. Methods: An electronic search was performed through MEDLINE/PubMed, Scopus, BioMed Central, and Web of Science until 30 June 2024. Results: Three-dimensionally printed titanium meshes and bone substitutes registered successful outcomes in vertical/horizontal bone defect regeneration. Three-dimensionally printed polymeric membranes could link the advantages of conventional resorbable and non-resorbable membranes. Few data on customized 3D printed dental implants and abutments are available, but in vitro and animal studies have shown new promising designs that could improve their mechanical properties and tribocorrosion-associated complications. Conclusions: While 3D printing technology has demonstrated potential in GBR, additional human studies are needed to evaluate the short- and long-term follow-up of peri-implant bone levels and volumes following prosthetic functional loading. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Dentistry Journal is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)