Diffusion tensor imaging in Behcet's disease with and without neurological involvement patients: evaluation of microstructural white matter abnormality with a tract-based spatial statistical analysis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Objective: This study aims to assess the microstructural abnormalities in white matter (WM) among Behcet's disease (BD) patients, both with and without neurological involvement, utilising tract-based spatial statistics (TBSS) to elucidate the underlying causes of WM microstructural changes. Methods: This prospective study comprised 43 BD patients without neurological involvement, 15 neuro-Behcet's disease (NBD) patients with normal conventional MRI, and 54 healthy controls matched for age and sex. TBSS was applied in this diffusion tensor imaging study to conduct a whole-brain voxel-wise analysis of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of WM. Results: Compared to the control group, BD patients exhibited decreased FA and increased MD and RD in nearly all WM tracts, along with increased AD in the left corticospinal tract (CST), left inferior longitudinal fasciculus (ILF), and left superior longitudinal fasciculus (SLF). NBD patients also showed a widespread decrease in FA and increased MD and RD, similar to BD patients without neurological involvement. Additionally, NBD patients had increased AD in the left CST, left ILF, left SLF, left inferior fronto-occipital fasciculus (IFOF), and right CST. Compared to BD patients without neurological involvement, NBD patients exhibited a greater reduction in FA and an increase in MD and RD in WM tracts, with no significant differences in AD. Conclusion: These results suggest that the main mechanism of microstructural changes in the WM of BD patients may be related to impaired fibre integrity, demyelination, and decreased myelin sheath integrity. Advances in knowledge: This study demonstrated BD patients without neurological involvement and NBD patients a decrease in FA and an increase in MD and RD were observed in larger areas of major WM tracts, while an increase in AD values was observed in fewer tracts. Our findings may be useful in understanding the pathophysiology underlying subclinical parenchymal involvement and neurological dysfunction in BD patients and the management of BD patients. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of British Journal of Radiology is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)