Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The ultra-high affinity transport proteins of ubiquitous marine bacteria.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
SAR11 bacteria are the most abundant microorganisms in the surface ocean1 and have global biogeochemical importance2–4. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters5,6. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.Genome-wide characterization of solute-binding proteins in SAR11, a group of ubiquitous marine bacteria, reveals that they generally combine high binding affinities with narrow binding specificities, suggesting a molecular mechanism for the adaptation of SAR11 to diverse marine environments. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Nature is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.