Catalytic Activity of an Asymmetric Uranyl‐Salophen on 2,4‐Dichlorophenol, 2,4,6‐Trichlorophenol, and Pentachlorophenol.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      This study employs density functional theory to investigate whether asymmetric uranyl‐Salophen catalyzes the activation of 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and pentachlorophenol. Changes in various important parameters such as bond lengths, Wiberg bond indices, infrared vibrational absorption spectra, natural charge distributions, ultraviolet–visible absorption spectra, and 13C NMR chemical shifts of the aromatic rings of chlorophenols before and after forming complexes with asymmetric uranyl‐Salophen are analyzed. This means that asymmetric uranyl‐Salophen indeed activates 2,4‐dichlorophenol, 2,4, 6‐trichlorophenol, and pentachlorophenol, significantly lengthening the aromatic ring bonds of the three chlorophenols and increasing the electrophilicity of the carbon atoms in the aromatic ring. This suggests that the conjugated system of the aromatic ring is also partially disrupted, indicating that these three chlorophenols are indeed catalytically activated. Furthermore, this implies that this asymmetric uranyl‐Salophen may be used to degrade chlorophenols in water. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Applied Organometallic Chemistry is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)