A retinal detachment based strabismus detection through FEDCNN.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Ocular strabismus, a common condition in the present generation is an absolute risk factor for amblyopia and blinding premorbid visual loss. Despite the availability of new optometry tools with eye-tracking data, the issues persist in attaining accuracy and reliability in diagnosing strabismus. These two concerns are specifically accommodated in this study by the proposed novel approach that involves CNNs with eye-tracking datasets from subjects. The presented work aims to improve the accuracy of diagnostics in ophthalmology utilizing the integration of the further proposed algorithms into an automatic strabismus detection system. For this purpose, the proposed FedCNN model combines the CNN with eXtreme Gradient Boosting (XGBoost) and uses the Gaze deviation (GaDe) images to capture dynamic eye movements. This method tries to make the feature extraction as accurate as possible in its best working state to enhance the diagnosis precision. The model proves to be accurate, reaching 95.2%, which is even more prominent because of the more or less detailed connection layer of the CNN, which is used for the selection of features designated for such tasks of strabismus recognition. The presented method has the potential of shifting the approach to diagnosing diseases of the eyes in more or less half of the patients. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Scientific Reports is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)