Influence of Current Collector Design and Combination on the Performance of Passive Direct Methanol Fuel Cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      In this work, an anode current collector with a scaled step-hole structure (called SF-type) and a cathode current collector with a perforated cross-tilt structure (called X-type) were designed and fabricated for application in passive direct methanol fuel cells (DMFCs). A whole-cell test showed that the combination of an anode SF-type current collector and cathode conventional current collector increased the optimal methanol concentration from 6 M to 8 M and the maximum power density to 5.40 mW cm−2, which improved the cell performance by 51.6% compared to that of the conventional design under ambient testing conditions. The combination of the anode conventional current collector and cathode X-type current collector achieved a maximum power density of 5.65 mW cm−2 with a 58.7% performance improvement, while the optimal methanol concentration was increased to 10 M. Furthermore, the combination of anode SF-type and cathode X-type obtained the highest power density at 6.22 mW cm−2. Notably, the anode and cathode catalyst loadings used in this study were 2.0 mg cm−2, which is lower than the commonly used loading, thus reducing the fuel cell cost. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Catalysts (2073-4344) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)