Effects of Velocity Loss During Bench-Press Training With Light Relative Loads.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Purpose: This study explored the effects of 4 bench-press (BP) training programs with different velocity-loss (VL) thresholds (0%, 15%, 25%, and 50%) on strength gains and neuromuscular adaptations. Methods: Forty-six resistance-trained men (22.8 [4.4] y) were randomly assigned into 4 groups that differed in the VL allowed within the set: 0% (VL0), 15% (VL15), 25% (VL25), and 50% (VL50). Training loads (40%–55% 1-repetition maximum), frequency (2 sessions/wk), number of sets (3), and interset recovery (4 min) were identical for all groups. Participants completed the following tests before and after an 8-week (16-session) BP training program: (1) maximal isometric test, (2) progressive loading test, and (3) fatigue test in the BP exercise. During all tests, triceps brachii muscle electromyography was assessed. Results: After completing the resistance-training program, no significant group × time interactions were noticed for isometric and dynamic BP strength variables. The dose–response relationship exhibited an inverted U-shaped relationship pattern, with VL25 showing the greatest effect sizes for almost all strength variables analyzed. The total number of repetitions performed during the training program increased as the VL magnitude increased. Conclusions: The group that trained with high VL threshold (50%), which performed a total of 876 repetitions, did not experience additional strength gains compared with those experienced by the 0%, 15%, and 25% of VL groups, which performed significantly fewer repetitions (48, 357, and 547, respectively). These findings suggest that when light loads (40%–55% 1-repetition maximum) are used, low and moderate VL thresholds (0%–25%) provide a higher training efficiency. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of International Journal of Sports Physiology & Performance is the property of Human Kinetics Publishers, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)