Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Learning analytics for online game-Based learning: a systematic literature review.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
Game-based learning researchers have been investigating various means to maximise learning in educational games. One promising venue in recent years has been the use of learning analytics in online game-based learning environments. However, little is known about how different elements of learning analytics (e.g. data types, techniques methods, and stakeholders) contribute to game-based learning practices within online learning environments. There is a need for a comprehensive review to bridge this gap. In this systematic review, we examined the related literature in five major international databases including Web of Science, Scopus, ERIC, IEEE, and compiled Proceedings of the International Conference on Learning Analytics and Knowledge. Twenty relevant publications were identified and analysed. The analysis was conducted using four core elements of learning analytics, namely the types of data that the system collects (what), the methods used for performing analytics (how), the reasons the system captures, analyzes, and reports data (why), and the recipients of the analytics (who). This study synthesises the existing literature, provides a conceptual framework as to how learning analytics can enhance online game-based learning practices in higher education, and sets the agenda for future research. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Behaviour & Information Technology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.