Multidisciplinary Reliability Design Optimization Modeling Based on SysML.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Model-Based Systems Engineering (MBSE) supports the system-level design of complex products effectively. Currently, system design and optimization for complex products are two distinct processes that must be executed using different software or platforms, involving intricate data conversion processes. Applying multidisciplinary optimization to validate system optimization often necessitates remodeling the optimization objects, which is time-consuming, labor-intensive, and highly error-prone. A critical activity in systems engineering is identifying the optimal design solution for the entire system. Multidisciplinary Design Optimization (MDO) and reliability analysis are essential methods for achieving this. This paper proposes a SysML-based multidisciplinary reliability design optimization modeling method. First, by analyzing the definitions and mathematical models of multidisciplinary reliability design optimization, the SysML extension mechanism is employed to represent the optimization model based on SysML. Next, model transformation techniques are used to convert the SysML optimization model generated in the first stage into an XML description model readable by optimization solvers. Finally, the proposed method's effectiveness is validated through an engineering case study of an in-vehicle environmental control integration system. The results demonstrate that this method fully utilizes SysML to express MDO problems, enhancing the efficiency of design optimization for complex systems. Engineers and system designers working on complex, multidisciplinary projects can particularly benefit from these advancements, as they simplify the integration of design and optimization processes, facilitating more reliable and efficient product development. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)