Experimental and numerical buckling analysis of CNT reinforced polymer composite plates.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      A combined experimental and numerical buckling analysis is performed for Carbon nanotube-reinforced composite (CNTRC) laminates under uniaxial in-plane compressive load. A finite element simulation program is developed in MATLAB environment and the recorded buckling responses are verified with the experimental results. Closely aligned numerical and experimental results exhibits that inclusion of 0.3% CNT increases buckling strengths of CNTRC composite laminates, regardless of their geometrical parameters. Clamped edge laminates exhibit higher buckling mode shapes, influenced by aspect ratio and edge restraint. Microscopic analysis of CNTRC's fractured surface under compression shows enhanced buckling strength attributed to CNTs’ bridging and pullout effects in the matrix, suppressing crack initiation and propagation. Field Emission Scanning Electronic Microscope (FESEM) is utilized for this investigation. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Materials Science & Technology is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)