Flare Removal Model Based on Sparse-UFormer Networks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      When a camera lens is directly faced with a strong light source, image flare commonly occurs, significantly reducing the clarity and texture of the photo and interfering with image processing tasks that rely on visual sensors, such as image segmentation and feature extraction. A novel flare removal network, the Sparse-UFormer neural network, has been developed. The network integrates two core components onto the UFormer architecture: the mixed-scale feed-forward network (MSFN) and top-k sparse attention (TKSA), creating the sparse-transformer module. The MSFN module captures rich multi-scale information, enabling the more effective addressing of flare interference in images. The TKSA module, designed with a sparsity strategy, focuses on key features within the image, thereby significantly enhancing the precision and efficiency of flare removal. Furthermore, in the design of the loss function, besides the conventional flare, background, and reconstruction losses, a structural similarity index loss has been incorporated to ensure the preservation of image details and structure while removing the flare. Ensuring the minimal loss of image information is a fundamental premise for effective image restoration. The proposed method has been demonstrated to achieve state-of-the-art performance on the Flare7K++ test dataset and in challenging real-world scenarios, proving its effectiveness in removing flare artefacts from images. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Entropy is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)