Harnessing the Power of Radiotherapy for Lung Cancer: A Narrative Review of the Evolving Role of Magnetic Resonance Imaging Guidance.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Simple Summary: MR-Linac is a novel magnetic resonance imaging (MRI)-guided radiotherapy (IGRT) that combines MRI with a linear accelerator (Linac). Although radiation therapy (RT) for lung cancer has traditionally been managed with a computed tomography (CT)-based workflow, an MR-Linac-based workflow would be able to address the many limitations of current practice. This narrative review summarizes the latest developments in MR-Linac lung cancer treatment, as well as its boundaries. Future research directions are also highlighted. Compared with computed tomography (CT), magnetic resonance imaging (MRI) traditionally plays a very limited role in lung cancer management, although there is plenty of room for improvement in the current CT-based workflow, for example, in structures such as the brachial plexus and chest wall invasion, which are difficult to visualize with CT alone. Furthermore, in the treatment of high-risk tumors such as ultracentral lung cancer, treatment-associated toxicity currently still outweighs its benefits. The advent of MR-Linac, an MRI-guided radiotherapy (RT) that combines MRI with a linear accelerator, could potentially address these limitations. Compared with CT-based technologies, MR-Linac could offer superior soft tissue visualization, daily adaptive capability, real-time target tracking, and an early assessment of treatment response. Clinically, it could be especially advantageous in the treatment of central/ultracentral lung cancer, early-stage lung cancer, and locally advanced lung cancer. Increasing demands for stereotactic body radiotherapy (SBRT) for lung cancer have led to MR-Linac adoption in some cancer centers. In this review, a broad overview of the latest research on imaging-guided radiotherapy (IGRT) with MR-Linac for lung cancer management is provided, and development pertaining to artificial intelligence is also highlighted. New avenues of research are also discussed. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Cancers is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)