STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      AbstractIndividual trajectory data play a pivotal role in various application fields, such as urban planning, traffic control, and epidemic simulation. Despite the diverse means for data collection in current times, the real-world trajectory data in practical application remains severely limited due to concerns over personal privacy. In this study, we designed a Spatiotemporal-knowledge enhanced multi-TAsk GEnerative adversarial network (GAN), named STAGE, to generate synthetic trajectories that statistically resemble the real data without recycling personal information. In STAGE, we designed a multi-task generator with three stages of spatio-temporal generation tasks, i.e. activity-sequence generation task, township-level trajectory generation task, and neighborhood-level trajectory generation task, with the last one as the main task while the other two as auxiliary tasks. Meanwhile, we designed a spatial consistency loss in the adversarial training process to assess the spatial consistency of generated trajectories at different spatial scales. Experiment results show that compared to the baselines, trajectories generated by our method have closer data distributions to the real ones. We argued that the designs of spatiotemporal-knowledge enhanced generation tasks and training loss benefit the spatiotemporal generation processes, which help reproduce the temporal patterns of human daily activities and spatial distribution of human movements. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of International Journal of Geographical Information Science is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)