SCSMD: Single Cell Consistent Clustering based on Spectral Matrix Decomposition.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Cluster analysis, a pivotal step in single-cell sequencing data analysis, presents substantial opportunities to effectively unveil the molecular mechanisms underlying cellular heterogeneity and intercellular phenotypic variations. However, the inherent imperfections arise as different clustering algorithms yield diverse estimates of cluster numbers and cluster assignments. This study introduces Single Cell Consistent Clustering based on Spectral Matrix Decomposition (SCSMD), a comprehensive clustering approach that integrates the strengths of multiple methods to determine the optimal clustering scheme. Testing the performance of SCSMD across different distances and employing the bespoke evaluation metric, the methodological selection undergoes validation to ensure the optimal efficacy of the SCSMD. A consistent clustering test is conducted on 15 authentic scRNA-seq datasets. The application of SCSMD to human embryonic stem cell scRNA-seq data successfully identifies known cell types and delineates their developmental trajectories. Similarly, when applied to glioblastoma cells, SCSMD accurately detects pre-existing cell types and provides finer sub-division within one of the original clusters. The results affirm the robust performance of our SCSMD method in terms of both the number of clusters and cluster assignments. Moreover, we have broadened the application scope of SCSMD to encompass larger datasets, thereby furnishing additional evidence of its superiority. The findings suggest that SCSMD is poised for application to additional scRNA-seq datasets and for further downstream analyses. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Briefings in Bioinformatics is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)