Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Habitat features important for the conservation of the endangered Sloane's Froglet (Crinia sloanei) in peri-urban environments.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
Context: Determining and quantifying habitat selection of endangered species in peri-urban environments assists planners and managers to develop strategies and alternative conservation measures in the face of urban expansion and development. Sloane's Froglet (Crinia sloanei), listed nationally as endangered in Australia, is a little-known species distributed within peri-urban environments, where foundational ecological information and the development of adequate conservation responses has been lacking. Aims: (a) To determine a core calling period for Sloane's Froglet and detection probabilities for occupancy surveys. (b) To understand and characterise the habitat that Sloane's Froglet uses at the wetland and microhabitat scale. Methods: We used generalised linear modelling and the information-theoretic approach to model habitat preferences for this species at two scales: the waterbody scale, and the microhabitat scale. We quantified the habitat characteristics of waterbodies occupied by Sloane's Froglet in winter, its peak breeding period, by measuring the biophysical characteristics of 54 occupied and 40 unoccupied waterbodies. The microhabitat and relative spatial positioning of Sloane's Froglet within waterbodies was examined at 54 calling sites in an area of one m squared around individual male Sloane's Froglets and 57 randomly selected unused sites. Wetlands were surveyed multiple times to determine detection probabilities. Key results: Model selection indicated that Sloane's Froglet is 450 times more likely to occupy a waterbody when an adjacent ephemeral shallow overflow is present; and are more likely to be present when there is greater cover of small stem-diameter emergent vegetation and less bare ground on the bank. The microhabitat investigation of one m squared sites showed that Sloane's Froglet's calling sites are predominantly inundated, and at significantly shallower water depths, than unused sites. Sloane's Froglet was found to always call from within the waterbody, distinguishing them from other sympatric Crinia species. Conclusions: The habitat characteristics detailed provide information necessary for the management of Sloane's Froglet and its habitat. Implications: Housing and industrial development is occurring rapidly in Sloane's Froglet habitat. The information provided here can be used to refine local and state government planning and better design appropriate responses. Indeed, results from this study are currently being used by agencies and environmental consultants when developing conservation plans and in the design of stormwater retention ponds in rapidly urbanising environments. Managing habitat for threatened species in peri-urban environments is increasingly difficult as rapid urban expansion occurs. This study modelled habitat for Sloane's Froglet, a little-known endangered Australian amphibian, at waterbody and microhabitat scales, showing that wetlands with adjacent shallow overflows and small stem-diameter reeds are essential for the species' survival. Habitat needs should be considered in assessing development proposals and designing constructed wetlands, including stormwater retention ponds. Photograph by Alexandra Knight. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Wildlife Research is the property of CSIRO Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.