Uncertainty in consensus predictions of plant species' vulnerability to climate change.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Aim: Variation in spatial predictions of species' ranges made by various models has been recognized as a significant source of uncertainty for modelling species distributions. Consensus approaches that combine the results of multiple models have been employed to reduce the uncertainty introduced by different algorithms. We evaluate how estimates of habitat suitability, projected using species distribution models (SDMs), varied among different consensus methods relative to the variation introduced by different global climate models (GCMs) and representative concentration pathways (RCPs) used for projection. Location: California Floristic Province (California, US portion). Methods: We modelled the current and future potential distributions of 82 terrestrial plant species, developing model predictions under different combinations of GCMs, RCPs, time periods, dispersal assumptions and SDM consensus methods commonly used to combine different species distribution modelling algorithms. We assessed how each of these factors contributed to the variability in future predictions of species habitat suitability change and aggregate measures of proportional change in species richness. We also related variability in species‐level habitat change to species' attributes. Results: Assuming full dispersal capacity, the variability between habitat predictions made by different consensus methods was higher than the variability introduced by different RCPs and GCMs. The relationships between species' attributes and variability in future habitat predictions depended on the source of uncertainty and dispersal assumptions. However, species with small ranges or low prevalence tended to be associated with high variability in range change forecasts. Main Conclusions: Our results support exploring multiple consensus approaches when considering changes in habitat suitability outside of species' current distributions, especially when projecting species with low prevalence and small range sizes, as these species tend to be of the greatest conservation concern yet produce highly variable model outputs. Differences in vulnerability between diverging greenhouse gas concentration scenarios are most readily observed for end‐of‐century time periods and within species' currently occupied habitats (no dispersal). [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Diversity & Distributions is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)