Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Driver at 10 MJ and 1 shot/30 min for inertial confinement fusion at high gain: Efficient, compact, low-cost, low laser–plasma instabilities, beam color selectable from 2ω/3ω/4ω, applicable to multiple laser fusion schemes.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Sui, Zhan; Lan, Ke
- Source:
Matter & Radiation at Extremes; Jul2024, Vol. 9 Issue 4, p1-4, 4p
- Subject Terms:
- Additional Information
- Subject Terms:
- Abstract:
The achievement of ignition at the National Ignition Facility (NIF) has prompted a global wave of further research on inertial fusion energy (IFE). However, IFE requires a target gain G of 30–100, and it is hard to achieve fusion at such high gain with the energy, configuration, and technical approach of the NIF. Here, we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ, 2–3 PW at 3ω (or 2ω, in which case the energy and power can be higher), and one shot per 30 min, with the aim of achieving G > 30. It is also efficient, compact, and low in cost, and it has low susceptibility to laser–plasma instabilities. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Matter & Radiation at Extremes is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.