Measuring and modeling soil moisture and runoff at solar farms using a disconnected impervious surface approach.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Ground‐mounted photovoltaic sites are often treated as impervious surfaces in stormwater permits. This ignores the pervious soils beneath and between solar arrays and leads to an overestimation of runoff. Our objective was to improve solar farm stormwater hydrology models by explicitly considering the disconnected impervious nature of solar design and site characteristics. Experimental sites established on utility scale solar farms in Colorado, Georgia, Minnesota, New York, and Oregon had perennial vegetative plantings with mean precipitation ranging from 40.6 to 124.5 cm, and soil texture ranging from loamy sand to clay. Soil moisture measurements were collected beneath arrays, under drip edges, and in the vegetated area between arrays at each site. Hydrus‐3D models for soil moisture and stormwater hydrology were developed that accounted for precipitation falling on solar panels, drip edge redistribution of rainfall, infiltration, and runoff in the pervious areas between solar arrays and beneath panels. Drip edge runoff averaged 3‐ to 10‐times incident precipitation at the New York and Minnesota sites, respectively. Root mean square error values between measured sub‐hourly soil moisture and predicted moisture for large measured single storm events averaged 0.029 across all five sites. Predicted runoff depths were strongly affected by precipitation depth, soil texture, soil profile depth, and soil bulk density. Runoff depths across the five experimental sites averaged 13%, 25%, and 45% of the 2‐, 10‐, and 100‐year design storm depths, clearly showing that these solar farms do not behave like impervious surfaces, but rather as disconnected impervious surfaces with substantial infiltration of runoff in the vegetated areas between and beneath solar arrays. Core Ideas: Hydrus‐3D accurately estimated soil moisture and infiltration beneath and between solar arrays.Solar panel drip edge runoff averaged from 3X to 10X precipitation depth falling on panels.Design storm depth, soil texture and depth, and soil bulk density had a large impact on solar farm runoff.Solar farm runoff on coarse‐textured, deep soils was much less than runoff from fine‐textured, shallow soils.Solar farm hydrology is accurately represented with a disconnected impervious modeling framework. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Vadose Zone Journal is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)