Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Carbon Footprint Analysis throughout the Life Cycle of the Continuous Deep Mixing Method (CDMM) Technology.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
The objective of this article is to assess the carbon footprint across the Continuous Deep Mixing Method (CDMM) life cycle, considering its implementation in the context of sustainable, zero-emission, and decarbonising construction. Amidst global climate change challenges of greenhouse gas emissions in the construction sector, the CDMM emerges as a potentially effective solution to mitigate environmental impact. This study aims to address the gap in the existing scientific literature by evaluating the environmental aspects of CDMM application, with a focus on identifying primary emission sources. This research extends beyond the conventional focus on construction materials to include energy consumption from equipment and transportation, offering a holistic view of the technology's environmental impact. This analysis identified cement as the major greenhouse gas emission source for the CDMM, underscoring the technology's potential as an alternative to traditional geotechnical methods, in line with integrated design solutions and meeting growing social expectations for sustainability. The added value of this study comes from data derived from an actual project, enabling a realistic assessment of CDMM's environmental impact and resource and energy efficiency. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Energies (19961073) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.