Angelicin improves osteoporosis in ovariectomized rats by reducing ROS production in osteoclasts through regulation of the KAT6A/Nrf2 signalling pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: Angelicin, which is found in Psoralea, can help prevent osteoporosis by stopping osteoclast formation, although the precise mechanism remains unclear. Methods: We evaluated the effect of angelicin on the oxidative stress level of osteoclasts using ovariectomized osteoporosis model rats and RAW264.7 cells. Changes in the bone mass of the femur were investigated using H&E staining and micro-CT. ROS content was investigated by DHE fluorescence labelling. Osteoclast-related genes and proteins were examined for expression using Western blotting, immunohistochemistry, tartrate-resistant acid phosphatase staining, and real-time quantitative PCR. The influence of angelicin on osteoclast development was also evaluated using the MTT assay, double luciferin assay, chromatin immunoprecipitation, immunoprecipitation and KAT6A siRNA transfection. Results: Rats treated with angelicin had considerably higher bone mineral density and fewer osteoclasts. Angelicin prevented RAW264.7 cells from differentiating into osteoclasts in vitro when stimulated by RANKL. Experiments revealed reduced ROS levels and significantly upregulated intracellular KAT6A, HO-1, and Nrf2 following angelicin treatment. The expression of genes unique to osteoclasts, such as MMP9 and NFATc1, was also downregulated. Finally, KAT6A siRNA transfection increased intracellular ROS levels while decreasing KAT6A, Nrf2, and HO-1 protein expression in osteoclasts. However, in the absence of KAT6A siRNA transfection, angelicin greatly counteracted this effect in osteoclasts. Conclusions: Angelicin increased the expression of KAT6A. This enhanced KAT6A expression helps to activate the Nrf2/HO-1 antioxidant stress system and decrease ROS levels in osteoclasts, thus inhibiting oxidative stress levels and osteoclast formation. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Chinese Medicine is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)